
The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit
and emotion-specified expression

Patrick Lucey1,2, Jeffrey F. Cohn1,2, Takeo Kanade1, Jason Saragih1, Zara Ambadar2
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 152131

Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 152602

patlucey@andrew.cmu.edu, jeffcohn@cs.cmu.edu, tk@cs.cmu.edu, jsaragih@andrew.cmu.edu

ambadar@pitt.edu

Iain Matthews
Disney Research, 4615 Forbes Ave, Pittsburgh, PA 15213

iainm@disneyresearch.com

Abstract

In 2000, the Cohn-Kanade (CK) database was released

for the purpose of promoting research into automatically

detecting individual facial expressions. Since then, the CK

database has become one of the most widely used test-beds

for algorithm development and evaluation. During this pe-

riod, three limitations have become apparent: 1) While AU

codes are well validated, emotion labels are not, as they

refer to what was requested rather than what was actually

performed, 2) The lack of a common performance metric

against which to evaluate new algorithms, and 3) Standard

protocols for common databases have not emerged. As a

consequence, the CK database has been used for both AU

and emotion detection (even though labels for the latter

have not been validated), comparison with benchmark algo-

rithms is missing, and use of random subsets of the original

database makes meta-analyses difficult. To address these

and other concerns, we present the Extended Cohn-Kanade

(CK+) database. The number of sequences is increased by

22% and the number of subjects by 27%. The target expres-

sion for each sequence is fully FACS coded and emotion

labels have been revised and validated. In addition to this,

non-posed sequences for several types of smiles and their

associated metadata have been added. We present baseline

results using Active Appearance Models (AAMs) and a lin-

ear support vector machine (SVM) classifier using a leave-

one-out subject cross-validation for both AU and emotion

detection for the posed data. The emotion and AU labels,

along with the extended image data and tracked landmarks

will be made available July 2010.

1. Introduction
Automatically detecting facial expressions has become

an increasingly important research area. It involves com-
puter vision, machine learning and behavioral sciences, and
can be used for many applications such as security [20],
human-computer-interaction [23], driver safety [24], and
health-care [17]. Significant advances have been made in
the field over the past decade [21, 22, 27] with increasing
interest in non-posed facial behavior in naturalistic contexts
[4, 17, 25] and posed data recorded from multiple views
[12, 19] and 3D imaging [26]. In most cases, several limi-
tations are common. These include:

1. Inconsistent or absent reporting of inter-observer re-
liability and validity of expression metadata. Emo-
tion labels, for instance, have referred to what expres-
sions were requested rather than what was actually per-
formed. Unless the validity of labels can be quantified,
it is not possible to calibrate algorithm performance
against manual (human) standards

2. Common performance metrics with which to eval-
uate new algorithms for both AU and emotion de-
tection. Published results for established algorithms
would provide an essential benchmark with which to
compare performance of new algorithms.

3. Standard protocols for common databases to make
possible quantitative meta-analyses.

The cumulative effect of these factors has made bench-
marking various systems very difficult or impossible. This
is highlighted in the use of the Cohn-Kanade (CK) database
[14], which is among the most widely used datasets for
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developing and evaluating algorithms for facial expression
analysis. In its current distribution, the CK (or DFAT)
database contains 486 sequences across 97 subjects. Each
of the sequences contains images from onset (neutral frame)
to peak expression (last frame). The peak frame was re-
liably FACS coded for facial action units (AUs). Due
to its popularity, most key recent advances in the field
have evaluated their improvements on the CK database
[16, 22, 25, 2, 15]. However as highlighted above, some
authors employ a leave-one-out cross-validation strategy on
the database, others have chosen another random train/test
set configuration. Other authors have also reported results
on the task of broad emotion detection even though no vali-
dated emotion labels were distributed with the dataset. The
combination of these factors make it very hard to gauge the
current-state-of-the-art in the field as no reliable compar-
isons have been made. This is a common problem across the
many publicly available datasets currently available such as
the MMI [19] and RUFACS [4] databases (see Zeng et al.
[27] for a thorough survey of currently available databases).

In this paper, we try to address these three issues by pre-
senting the Extended Cohn-Kanade (CK+) database, which
as the name suggests is an extension to the current CK
database. We have added another 107 sequences as well
as another 26 subjects. The peak expression for each se-
quence is fully FACS coded and emotion labels have been
revised and validated with reference to the FACS Investiga-
tors Guide [9] confirmed by visual inspection by emotion
researchers. We propose the use of a leave-one-out sub-
ject cross-validation strategy and the area underneath the
receiver operator characteristic (ROC) curve for evaluating
performance in addition to an upper-bound error measure.
We present baseline results on this using our Active Appear-
ance Model (AAM)/support vector machine (SVM) system.

2. The Extended Cohn-Kanade (CK+) Dataset

2.1. Image Data

Facial behavior of 210 adults was recorded using two
hardware synchronized Panasonic AG-7500 cameras. Par-
ticipants were 18 to 50 years of age, 69% female, 81%,
Euro-American, 13% Afro-American, and 6% other groups.
Participants were instructed by an experimenter to perform
a series of 23 facial displays; these included single action
units and combinations of action units. Each display began
and ended in a neutral face with any exceptions noted. Im-
age sequences for frontal views and 30-degree views were
digitized into either 640x490 or 640x480 pixel arrays with
8- bit gray-scale or 24-bit color values. Full details of this
database are given in [14].

2.1.1 Posed Facial Expressions

In the original distribution, CK included 486 FACS-coded
sequences from 97 subjects.. For the CK+ distribution,
we have augmented the dataset further to include 593 se-
quences from 123 subjects (an additional 107 (22%) se-
quences and 26 (27%) subjects). The image sequence vary
in duration (i.e. 10 to 60 frames) and incorporate the onset
(which is also the neutral frame) to peak formation of the
facial expressions

2.1.2 Non-posed Facial Expressions

During the recording of CK, 84 subjects smiled to the exper-
imenter at one or more times between tasks. These smiles
were not performed in response to a request. They com-
prised the initial pool for inclusion in CK+. Criteria for fur-
ther inclusion were: a) relatively neutral expression at start,
b) no indication of the requested directed facial action task,
c) absence of facial occlusion prior to smile apex, and d) ab-
sence of image artifact (e.g., camera motion). One hundred
twenty-two smiles from 66 subjects (91% female) met these
criteria. Thirty two percent were accompanied by brief ut-
terances, which was not unexpected given the social setting
and hence not a criterion for exclusion.

2.2. Action Unit Labels
2.2.1 Posed Expressions

For the 593 posed sequences, full FACS coding of peak
frames is provided. Approximately fifteen percent of the se-
quences were comparison coded by a second certified FACS
coder. Inter-observer agreement was quantified with coef-
ficient kappa, which is the proportion of agreement above
what would be expected to occur by chance [10].. The mean
kappas for inter-observer agreement were 0.82 for action
units coded at apex and 0.75 for frame-by-frame coding. An
inventory of the AUs coded in the CK+ database are given in
Table 1. The FACS code coincide with the the peak frames.

2.2.2 Non-posed Expressions

A subset of action units were coded for presence/absence.
These were, AU 6, AU 12, smile controls (AU 15, AU 17,
AU 23/24), and AU 25/26. Comparison coding was per-
formed for 20% of the smiles. Inter-coder agreement as
measured by Cohens kappa coefficient was 0.83 for AU 6
and 0.65 for smile controls.

2.3. Validating Emotion Labels
2.3.1 Posed Expressions

We included all image data from the pool of 593 sequences
that had a nominal emotion label based on the subject’s im-
pression of each of the 7 basic emotion categories: Anger,



AU Name N AU Name N AU Name N
1 Inner Brow Raiser 173 13 Cheek Puller 2 25 Lips Part 287
2 Outer Brow Raiser 116 14 Dimpler 29 26 Jaw Drop 48
4 Brow Lowerer 191 15 Lip Corner Depressor 89 27 Mouth Stretch 81
5 Upper Lip Raiser 102 16 Lower Lip Depressor 24 28 Lip Suck 1
6 Cheek Raiser 122 17 Chin Raiser 196 29 Jaw Thrust 1
7 Lid Tightener 119 18 Lip Puckerer 9 31 Jaw Clencher 3
9 Nose Wrinkler 74 20 Lip Stretcher 77 34 Cheek Puff 1

10 Upper Lip Raiser 21 21 Neck Tightener 3 38 Nostril Dilator 29
11 Nasolabial Deepener 33 23 Lip Tightener 59 39 Nostril Compressor 16
12 Lip Corner Puller 111 24 Lip Pressor 57 43 Eyes Closed 9

Table 1. Frequency of the AUs coded by manual FACS coders on the CK+ database for the peak frames.

Emotion Criteria
Angry AU23 and AU24 must be present in the AU combination

Disgust Either AU9 or AU10 must be present
Fear AU combination of AU1+2+4 must be present, unless AU5 is of intensity E then AU4 can be absent

Happy AU12 must be present
Sadness Either AU1+4+15 or 11 must be present. An exception is AU6+15
Surprise Either AU1+2 or 5 must be present and the intensity of AU5 must not be stronger than B

Contempt AU14 must be present (either unilateral or bilateral)

Table 2. Emotion description in terms of facial action units.

Contempt, Disgust, Fear, Happy, Sadness and Surprise. Us-
ing these labels as ground truth is highly unreliable as these
impersonations often vary from the stereotypical definition
outlined by FACS. This can cause error in the ground truth
data which affects the training of the systems. Conse-
quently, we have labeled the CK+ according to the FACS
coded emotion labels. The selection process was in 3 steps:

1. We compared the FACS codes with the Emotion Pre-
diction Table from the FACS maual [9]. The Emo-
tion Prediction Table listed the facial configurations
(in terms of AU combinations) of prototypic and ma-
jor variants of each emotion, except contempt. If a
sequence satisfied the criteria for a prototypic or major
variant of an emotion, it was provisionally coded as be-
longing in that emotion category. In the first step, com-
parison with the Emotion Prediction Table was done by
applying the emotion prediction “rule strictly. Apply-
ing the rule strictly means the presence of additional
AU(s) not listed on the table, or the missing of an AU
results in exclusion of the clip.

2. After the first pass, a more loose comparison was per-
formed. If a sequence included an AU not included in
the prototypes or variants, we determined whether they
were consistent with the emotion or spoilers. For in-
stance, AU 4 in a surprise display would be considered

inconsistent with the emotion. (AU 4 is a component
of negative emotion or attention and not surprise). AU
4 in the context of disgust would be considered consis-
tent, as it is a component of negative emotion and may
accompany AU 9. Similarly, we evaluated whether any
necessary AU were missing. Table 2 lists the qualify-
ing criteria. if Au were missing, Other consideration
included: AU20 should not be present except for but
fear; AU9 or AU10 should not be present except for
disgust. Subtle AU9 or AU10 can be present in anger.

3. The third step involved perceptual judgment of
whether or not the expression resembled the target
emotion category. This step is not completely indepen-
dent from the first two steps because expressions that
included necessary components of an emotion would
be likely to appear as an expression of that emotion.
However, the third step was because the FACS codes
only describe the expression at the peak phase and do
not take into account the facial changes that lead to the
peak expression. Thus, visual inspection of the clip
from onset to peak was necessary to determine whether
the expression is a good representation of the emotion.

As a result of this multistep selection process, 327 of the
593 sequences were found to meet criteria for one of seven
discrete emotions. The inventory of this selection process is
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Figure 1. Examples of the CK+ database. The images on the top level are subsumed from the original CK database and those on the bottom
are representative of the extended data. All up 8 emotions and 30 AUs are present in the database. Examples of the Emotion and AU labels
are: (a) Disgust - AU 1+4+15+17, (b) Happy - AU 6+12+25, (c) Surprise - AU 1+2+5+25+27, (d) Fear - AU 1+4+7+20, (e) Angry - AU
4+5+15+17, (f) Contempt - AU 14, (g) Sadness - AU 1+2+4+15+17, and (h) Neutral - AU0 are included.

Emotion N
Angry (An) 45
Contempt (Co) 18
Disgust (Di) 59
Fear (Fe) 25
Happy (Ha) 69
Sadness (Sa) 28
Surprise (Su) 83

Table 3. Frequency of the stereotypical emotion checked by manual

FACS coders on the CK+ database for the peak frames.

given in Table 3. Examples of the CK+ dataset is given in
Figure 1.

2.3.2 Non-Posed Smiles

Sequences projected one at a time onto a large viewing
screen to groups of 10 to 17 participants. Participants
recorded their judgments during a pause following each
item. They were instructed to watch the whole clip and
make judgments after seeing the item number at the end
of the clip. Judgments consisted of smile type (amused,
embarrassed, nervous, polite, or other), and Likert-type rat-
ings of smile intensity (from 1 = no emotion present to 7 =
extreme emotion), and confidence in smile type judgments
(from 1 = no confidence to 7 = extreme confidence).

For each sequence we calculated the percentage of par-
ticipants who judged it as amused, embarrassed, nervous,
polite, or other. These percentages are referred to as judg-
ment scores. From the five judgment scores, smiles were
assigned to the modal type if at least 50% of participants
endorsed that type and no more than 25 % endorsed an-
other. The 50% endorsement criterion represented the min-

imum modal response. The 25% maximum endorsement
for the rival type was used to ensure discreteness of the
modal response. By this criterion, 19 were classified as
perceived amused, 23 as perceived polite, 11 as perceived
embarrassed or nervous, and 1 as other. CK+ includes the
modal scores and the ratings for each sequence. For details
and for future work using this portion of the database please
see and cite [1].

3. Baseline System
In our system, we employ an Active Appearance Model

(AAM) based system which uses AAMs to track the face
and extract visual features. We then use support vector ma-
chines (SVMs) to classify the facial expressions and emo-
tions. An overview of our system is given in Figure 2. We
describe each of these modules in the following subsections.

3.1. Active Appearance Models (AAMs)
Active Appearance Models (AAMs) have been shown

to be a good method of aligning a pre-defined linear shape
model that also has linear appearance variation, to a previ-
ously unseen source image containing the object of interest.
In general, AAMs fit their shape and appearance compo-
nents through a gradient-descent search, although other op-
timization methods have been employed with similar results
[7].

The shape s of an AAM [7] is described by a 2D tri-
angulated mesh. In particular, the coordinates of the mesh
vertices define the shape s = [x1, y1, x2, y2, . . . , xn, yn],
where n is the number of vertices. These vertex locations
correspond to a source appearance image, from which the
shape was aligned. Since AAMs allow linear shape varia-
tion, the shape s can be expressed as a base shape s0 plus a
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Figure 2. Block diagram of our automatic system. The face is tracked using an AAM and from this we get both similarity-normalized
shape (SPTS) and canonical appearance (CAPP) features. Both these features are used for classification using a linear SVM.

linear combination of m shape vectors si:

s = s0 +
mX

i=1

pisi (1)

where the coefficients p = (p1, . . . , pm)T are the shape
parameters. These shape parameters can typically be di-
vided into rigid similarity parameters ps and non-rigid ob-
ject deformation parameters po, such that pT = [pT

s ,p
T
o ].

Similarity parameters are associated with a geometric sim-
ilarity transform (i.e. translation, rotation and scale). The
object-specific parameters, are the residual parameters rep-
resenting non-rigid geometric variations associated with the
determing object shape (e.g., mouth opening, eyes shutting,
etc.). Procrustes alignment [7] is employed to estimate the
base shape s0.

Keyframes within each video sequence were manually
labelled, while the remaining frames were automatically
aligned using a gradient descent AAM fitting algorithm de-
scribed in [18].

3.2. Feature Extraction
Once we have tracked the patient’s face by estimating

the shape and appearance AAM parameters, we can use this
information to derive the following features:

• SPTS: The similarity normalized shape, sn, refers to
the 68 vertex points in sn for both the x- and y- co-
ordinates, resulting in a raw 136 dimensional feature
vector. These points are the vertex locations after all
the rigid geometric variation (translation, rotation and
scale), relative to the base shape, has been removed.
The similarity normalized shape sn can be obtained
by synthesizing a shape instance of s, using Equation
1, that ignores the similarity parameters p. An exam-
ple of the similarity normalized shape features, SPTS,
is given in Figure 2. AU0 normalization was used in
this work, by subtracting the features of the first frame
(which was neutral).

• CAPP: The canonical normalized appearance a0
refers to where all the non-rigid shape variation has
been normalized with respect to the base shape s0.
This is accomplished by applying a piece-wise affine
warp on each triangle patch appearance in the source
image so that it aligns with the base face shape. For
this study, the resulting 87⇥ 93 synthesized grayscale
image was used. In previous work [3], it was shown by
removing the rigid shape variation, poor performance
was gained. As such, only the canonical normalized
appearance features a0 were used in this paper.

3.3. Support Vector Machine Classification
Support vector machines (SVMs) have been proven use-

ful in a number of pattern recognition tasks including face
and facial action recognition. SVMs attempt to find the hy-
perplane that maximizes the margin between positive and
negative observations for a specified class. A linear SVM
classification decision is made for an unlabeled test obser-
vation x⇤ by,

wTx⇤ >true b (2)
<false

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b are estimated so that they
minimize the structural risk of a train-set, thus avoiding the
possibility of overfitting to the training data. Typically, w
is not defined explicitly, but through a linear sum of support
vectors. A linear kernel was used in our experiments due to
its ability to generalize well to unseen data in many pattern
recognition tasks [13]. LIBSVM was used for the training
and testing of SVMs [6].

For AU detection, we just used a linear one-vs-all two-
class SVM (i.e. AU of interest vs non-AU of interest). For
the training of the linear SVM for each of the AU detectors,



AU N SPTS CAPP SPTS+CAPP
1 173 94.1± 1.8 91.3± 2.1 96.9± 1.3

2 116 97.1± 1.5 95.6± 1.9 97.9± 1.3

4 191 85.9± 2.5 83.5± 2.7 91.0± 2.1

5 102 95.1± 2.1 96.6± 1.8 97.8± 1.5

6 122 91.7± 2.5 94.0± 2.2 95.8± 1.8

7 119 78.4± 3.8 85.8± 3.2 89.2± 2.9

9 74 97.7± 1.7 99.3± 1.0 99.6± 0.7

11 33 72.5± 7.8 82.0± 6.7 85.2± 6.2

12 111 91.0± 2.7 96.0± 1.9 96.3± 1.8

15 89 79.6± 4.3 88.3± 3.4 89.9± 3.2

17 196 84.4± 2.6 90.4± 2.1 93.3± 1.8

20 77 91.0± 3.3 93.0± 2.9 94.7± 2.6

23 59 91.1± 3.7 87.6± 4.3 92.2± 3.5

24 57 83.3± 4.9 90.4± 3.9 91.3± 3.7

25 287 97.1± 1.0 94.0± 1.4 97.5± 0.9

26 48 75.0± 6.3 77.6± 6.0 80.3± 5.7

27 81 99.7± 0.7 98.6± 1.3 99.8± 0.5

AVG 90.0± 2.5 91.4± 2.4 94.5± 2.0

Table 4. Results showing the area underneath the ROC curve for

the shape and appearance features for AU detection. Note the

average is a weighted one, depending on the number of positive

examples.

all neutral and peak frames from the training sets were used.
The frames which were coded to contain the AU were used
as positive examples and all others were used as negative
examples, regardless if the AU occurred alone or in combi-
nation with other AUs. The output from SVM related just to
the distance to the hyperplane which works well for a single
decision. However, these scores have no real meaning when
comparing them from different SVMs. As such, comparing
or combining these scores does not make sense and can lead
to erroneous results. Calibrating the scores into a common
domain is required so that comparisons and fusion can take
place. Logistical linear regression is one method of doing
this [5]. In this paper, we fused both the scores from the
SPTS and CAPP feature sets to determine if there was any
complementary information between these two. The FoCal
package was used for calibrating and fusing the various AU
SVM scores together using LLR [5].

For the task of emotion detection a forced multi-class de-
cision has to be made. To accommodate this, a one-versus
all multi-class SVM was used (i.e. Angry vs not Angry,
Happy vs not Happy etc.). All frames which were coded
as the particular emotion of interest were used as the posi-
tive example and all others were used as negative examples.
A seven-way forced choice of the possible emotions was
performed (neutral was neglected as the neutral frame was
subtracted from all features).

4. Experiments
4.1. Benchmarking Protocol and Evaluation Metric

In this paper, we document two types of experiments that
can be conducted on the posed section of the CK+ database:
(i) AU detection, and (ii) emotion detection. To maxi-
mize the amount of training and testing data, we believe
the use of a leave-one-subject-out cross-validation config-
uration should be used. This means for AU detection, 123
different training and testing sets need to be used, and for
emotion detection, 118 different training and test sets need
to be used.

In terms of evaluating the different experiments, for AU
detection the area underneath the receiver-operator charac-
teristic (ROC) curve is a reliable measure. This curve is
obtained by plotting the hit-rate (true positives) against the
false alarm rate (false positives) as the decision threshold
varies. The area underneath this curve (A0), is used to as-
sess the performance [4]. The A0 metric ranges from 50
(pure chance) to 100 (ideal classification)1. Results should
be averaged across these sets. An upper-bound on the un-
certainty of the A0 statistic should also be included to give
an idea of the reliability of the performance. A common
statistic used is for this is s =

q
A0(1�A0)

min {np,nn} where np, nn

are the number of positive and negative examples [8, 25].
For emotion detection, we used a confusion matrix to doc-
ument the results.

4.2. AU Detection Results
The results for AU detection for both similarity-

normalized shape (SPTS) and canonical appearance
(CAPP) features and the combination of both features are
given in Table 4. From the results it can be seen that all
feature types achieve very good overall accuracy with per-
formance of A0 >= 90, with a combination of both the
SPTS+CAPP features yielding the best performance with a
rating of 94.5. This suggests that there exists complimen-
tary information between both shape and appearance fea-
tures.

In terms of individual AU detection, it can be seen de-
pending on the AU, the best performing feature set varies.
When comparing the individual SPTS and CAPP features,
the SPTS features yielded the higher detection rates for AUs
1, 2, 4, 23, 25 and 27, while the CAPP features gained bet-
ter performance for AUs 5, 6, 7, 9, 11, 12, 15, 17, 20, 24
and 26. Even though the difference in performance is quite
small for some of these AUs, an explanation of these re-
sults can stem from the AAM 2-D mesh. For example AUs
1, 2 and 4 are actions coinciding with eye brow movement
which can easily be picked up by the shape features as they

1In literature, the A0 metric varies from 0.5 to 1, but for this work we
have multiplied the metric by 100 for improved readability of results



lie on the AAM 2-D mesh. For AUs 6, 9 and 11, a lot of tex-
tural change in terms of wrinkles and not so much in terms
of contour movement, which would suggest why the CAPP
features performed better than the SPTS for these.

4.3. Emotion Detection Results

The performance of the shape (SPTS) features for emo-
tion detection is given in Table 5 and it can be seen that Dis-
gust, Happiness and Surprise all perform well compared to
the other emotions. This result is intuitive as these are very
distinctive emotions causing a lot of deformation within the
face. The AUs associated with these emotions also lie on the
AAM mesh, so movement of these areas is easily detected
by our system. Conversely, other emotions (i.e. Anger, Sad-
ness and Fear) that do not lie on the AAM mesh do not per-
form as well for the same reason. However, for these emo-
tions textural information seems to be more important. This
is highlighted in Table 6. Disgust also improves, as there is
a lot of texture information contained in the nose wrinkling
(AU9) associated with this prototypic emotion.

For both the SPTS and CAPP features, Contempt has
a very low hit-rate. However, when output from both the
SPTS and CAPP SVMs are combined (through summing
the output probabilities) it can be seen that the detection of
this emotion jumps from just over 20% to over 80% as can
be seen in Table 7. An explanation for this can be from
that fact that this emotion is quite subtle and it gets easily
confused with other, stronger emotions. However, the con-
fusion does not exist in both features sets. This also appears
to have happen for the other subtler emotions such as Fear
and Sadness, with both these emotions benefitting from the
fusion of both shape and appearance features.

The results given in Table 7 seem to be inline with re-
cent perceptual studies. In a validation study conducted on
the Karolinska Directed Emotional Faces (KDEF) database
[11], results for the 6 basic emotions (i.e. all emotions in
CK+ except Contempt) plus neutral, were similar to the
ones presented here. In this study they used 490 images (i.e.
70 per emotion) and the hit rates for each emotion were2:
Angry - 78.81% (75.00%), Disgust - 72.17% (94.74%),
Fear - 43.03% (65.22%), Happy - 92.65% (100%), Sadness
- 76.70% (68.00%), Surprised - 96.00% (77.09%), Neutral
- 62.64% (100%)3.

This suggests that an automated system can do just as a
good job, if not better as a naive human observer and suffer
from the same confusions due to the perceived ambiguity
between subtle emotions. However, human observer ratings

2our results are in the brackets next to the KDEF human observer re-
sults

3As neutral frame is subtracted, just a simple energy based measure of
shape movement results in perfect detection of the neutral frame. How-
ever, this is very unlikely to occur in a realistic scenario as there is much
variation in the neutral frame and subtracted this will not be possible

An Di Fe Ha Sa Su Co

An 35.0 40.0 0.0 5.0 5.0 15.0 0.0
Di 7.9 68.4 0.0 15.8 5.3 0.0 2.6
Fe 8.7 0.0 21.7 21.7 8.7 26.1 13.0
Ha 0.0 0.0 0.0 98.4 1.6 0.0 0.0
Sa 28.0 4.0 12.0 0.0 4.0 28.0 24.0
Su 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Co 15.6 3.1 6.3 0.0 15.6 34.4 25.0

Table 5. Confusion matrix of emotion detection for the similarity-

normalized shape (SPTS) features - the emotion classified with

maximum probability was shown to be the emotion detected.

An Di Fe Ha Sa Su Co

An 70.0 5.0 5.0 0.0 10.0 5.0 5.0
Di 5.3 94.7 0.0 0.0 0.0 0.0 0.0
Fe 8.7 0.0 21.7 21.7 8.7 26.1 13.0
Ha 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Sa 16.0 4.0 8.0 0.0 60.0 4.0 8.0
Su 0.0 0.0 1.3 0.0 0.0 98.7 0.0
Co 12.5 12.5 3.1 0.0 28.1 21.9 21.9

Table 6. Confusion matrix of emotion detection for the canonical

appearance (CAPP) features - the emotion classified with maxi-

mum probability was shown to be the emotion detected.

An Di Fe Ha Sa Su Co

An 75.0 7.5 5.0 0.0 5.0 2.5 5.0
Di 5.3 94.7 0.0 0.0 0.0 0.0 0.0
Fe 4.4 0.0 65.2 8.7 0.0 13.0 8.7
Ha 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Sa 12.0 4.0 4.0 0.0 68.0 4.0 8.0
Su 0.0 0.0 0.0 0.0 4.0 96.0 0.0
Co 3.1 3.1 0.0 6.3 3.1 0.0 84.4

Table 7. Confusion matrix of emotion detection for the combina-

tion of features (SPTS+CAPP) - the emotion classified with maxi-

mum probability was shown to be the emotion detected. The fusion

of both systems were performed by summing up the probabilities

from output of the multi-class SVM.

need to be performed on the CK+ database and automated
results need to be conducted on the KDEF database to test
out the validity of these claims.

5. Conclusions and Future Work
In this paper, we have described the Extended Cohn-

Kanade (CK+) database for those researchers wanting to
prototype and benchmark systems for automatic facial ex-
pression detection. Due to the popularity and ease of ac-
cess for the original Cohn-Kanade dataset this is seen as a
very valuable addition to the already existing corpora that



is already in existence. For a fully automatic system to be
robust for all expression in a myriad of realistic scenarios
more data is required. For this to occur very large reliably
coded datasets across a wide array of visual variabilities are
required (at least 5 to 10k examples for each action). This
will require a concerted collaborative research effort from
a wide array of research institutions due to the cost asso-
ciated with capturing, coding, storing and distributing such
data. In this final distribution of the database, we hope to
augment what we described here with non-frontal data con-
sisting of synchronous views of the posed expressions from
an angle of 30 degrees.

6. CK+ Database Availability
In the summer (⇡ July) of 2010 we envisage that the

CK+ database will be ready for distribution to the research
community. Similarly to the original CK database, inter-
ested parties will have to visit http://vasc.ri.cmu.
edu/idb/html/face/facial_expression/ and
download and sign an agreement that governs its use and re-
turn the completed form. Once the form has been received,
it will take around 4 to 5 business days for receipt of instruc-
tions by email on how to download the database. For work
being conducted on the non-posed data, please cite [1].
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