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ABSTRACT
Continuous deep brain stimulation (DBS) of the ventral stria-

tum (VS) is an e�ective treatment for severe, treatment-refractory
obsessive-compulsive disorder (OCD). Optimal parameter settings
are signaled by a mirth response of intense positive a�ect, which is
subjectively identi�ed by clinicians. Subjective judgments are id-
iosyncratic and di�cult to standardize. To objectively measure
mirth responses, we used Automatic Facial A�ect Recognition
(AFAR) in a series of longitudinal assessments of a patient treated
with DBS. Pre- and post-adjustment DBS were compared using
both statistical and machine learning approaches. Positive a�ect
was signi�cantly higher after DBS adjustment. Using XGBoost and
SVM, the participant’s pre- and post-adjustment responses were
di�erentiated with accuracy values of 0.76 and 0.75, which suggest
feasibility of objective measurement of mirth response.

CCS CONCEPTS
• Applied computing! Psychology.

KEYWORDS
a�ective computing; clinical research; deep brain stimulation (DBS);
ventral striatum; obsessive-compulsive disorder (OCD)

ACM Reference Format:
Yaohan Ding, Itir Onal Ertugrul, Ali Darzi, Nicole Provenza, László A. Jeni,
David Borton, Wayne Goodman, and Je�rey Cohn*. 2020. Automated Detec-
tion of Optimal DBS Device Settings. In Companion Publication of the 2020
International Conference on Multimodal Interaction (ICMI ’20 Companion),
October 25–29, 2020, Virtual event, Netherlands. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3395035.3425354

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICMI ’20 Companion, October 25–29, 2020, Virtual event, Netherlands
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8002-7/20/10.
https://doi.org/10.1145/3395035.3425354

1 INTRODUCTION
Obsessive compulsive disorder (OCD) is a persistent, oftentimes

disabling psychiatric disorder that is characterized by obsessive
thoughts and compulsive behavior. Obsessive thoughts are intru-
sive and unwanted and can be highly disturbing. Compulsions are
repetitive behaviors that an individual feels driven to perform. For
patients with severe treatment-resistant OCD, continuous deep
brain stimulation (DBS) of the ventral striatum (VS) is an e�ective
treatment [1]. Nearly 70 percent of patients experienced a 25 per-
cent or greater decrease in symptom severity[10] after a 12-month
treatment[5]. While the underlying principles and mechanisms of
DBS are not fully understood, DBS directly changes the activation
of the target region in a controlled manner [8]. The target region
is the ventral striatum, which is involved in a�ect processing. A
potential side e�ect of DBS is hypomania, which can have deleteri-
ous consequences. To avoid this potential side e�ect and maximize
treatment e�cacy, optimal programming of DBS is essential over
the course of treatment.

A mirth response of intense positive a�ect frequently occurs
during initial DBS and signals good prognosis. The mirth response
is related to the a�ective circuitry of the VS. In practice, optimal
DBS adjustments are made largely on the basis of subjective clinical
judgment of patient responses. While useful, subjective judgments
are idiosyncratic and di�cult to standardize. To maximize treat-
ment e�cacy while minimizing potential side e�ects, we applied
objective, automatic measurement to programming session videos.

The mirth response is quanti�ed as the intensity summation of
two facial actions units (AU) as de�ned by the Facial Action Coding
System [7]: AU6 (cheek raiser) and AU12 (lip corner puller), which
together make the Duchenne smile that represents and signals
positive emotion[2, 3, 9, 11]. We acquired the intensity of these
2 AUs using Automatic Facial A�ect Recognition (AFAR) [14], a
powerful toolkit for assessing severity of negative and positive
a�ect[6, 12, 13].We explored its e�ectiveness to objectivelymeasure
mirth response (positive a�ect) to DBS adjustments.



2 METHODS AND EXPERIMENTS
2.1 A. Data and Features

This case study is from an ongoing clinical trial for treatment-
refractory OCD. The participant, a male, is the �rst one to com-
plete the two-year long trial. Over this period, DBS was manually
adjusted by his physician in a series of 21 video-recorded program-
ming sessions beginning at his sixth session. In prior sessions (1
through 5) the DBS device had not yet been implanted or had not yet
been activated with brief exception of during implantation surgery.

In 11 sessions, DBS was adjusted to an optimal setting from its
initial setting for that session. In some others (16, 21, 22, 25 and
26) no change was made or change was not recorded (17 and 18);
and three sessions were missing for lack of video (20) , an incom-
plete visit (23) and technical reasons (24). Our primary interest was
in detecting di�erence in positive a�ect between pre- and post-
adjustment settings in the 11 sessions in which adjustments in DBS
occurred.

For each session, AFAR tracks 49 2D-facial landmarks, 3 head
poses (pitch, yaw, and roll), and intensities of facial action units . Pos-
itive a�ect (PA) in facial expression was represented by Duchenne
smiling: adding up the estimated intensities of AU 6 (cheek raiser)
and AU 12 (lip corner puller). Frame-level displacement and veloc-
ity of head pose and facial muscle movement (averaging over 49
landmarks) were calculated to represent the dynamics of head and
face. Amplitude and velocity of AU6 and AU12 intensities were
calculated to represent the dynamics of AUs.

Because DBS targets a�ective circuits, a mirth response is ex-
pected to occur rapidly. For this reason, we focused on the �rst 15s
trial of the pre- and optimal post-adjustment settings in each of the
11 sessions provided by the clinical record. Some minor exceptions
were necessary. In Session 7, because of large head motion that
confounded initial face tracking, we shifted to the �rst tracked 15s
trial. Session 13’s initial setting lasted only 4 seconds. Session 14’s
�nal setting lasted 12s.

For machine learning model training, each 15s trial was divided
into 15 1-second samples and assigned to 3 session-independent
folds. For each sample, we calculated the mean, max, and standard
deviation of the 8 frame-level features described above, resulting
in a 1x24 feature vector for each sample.

XGBoost[4] and SVM[15] classi�ers were trained to distinguish
participant’s responses under pre- and optimal post-adjustment
DBS settings. For XGBoost, features were later selected based on
the summation of their weights in 3 folds. We sorted the features by
weight descending and built newmodels by adding one feature each
time until the performance peaked. For SVM, we used a sequential
forward feature selection strategy where the top 24 updated feature
sets were retained for the next feature-adding round. The �nal fea-
ture sets were selected based on the best performance and the least
number of features. Because of the limited number of samples and
our interest in features that can be interpreted, deep approaches
were not considered. Since the dataset is balanced, classi�er perfor-
mance is evaluated by accuracy. The chance accuracy is calculated
by assuming the models only predict the post-adjustment class.

Figure 1: Change in PA by visiting session. Programming
started at the 6th visit.

Table 1: 3-fold session-independent cross validation classi�-
cation results

Trial
Length #Sample Chance

Accuracy

XGBoost
#Selected
Feature

XGBoost
Accuracy

SVM
#Selected
Feature

SVM
Accuracy

3 66 0.50 1 0.64 3 0.74
5 109 0.50 1 0.68 9 0.72
7 151 0.51 2 0.76 9 0.75
10 214 0.51 2 0.75 11 0.70
12 256 0.52 3 0.70 6 0.69
15 316 0.51 8 0.64 12 0.71

2.2 B. Results
(Figure. 1) shows the mean PA of 15s trials under two settings by

session indices. The studied sessions are marked. For 9 out of 11 ses-
sions, the participant evidenced increases in positive a�ect (PA)with
C = �2.29, ? < 0.05 (paired t-test with 10 346A44B > 5 5 A443><). We
also examined intervals over the range 3 to 15. All were statistically
signi�cant.

Accuracy for the 15s trials and for shorter ones (Table.1) sug-
gests that both classi�ers perfomred better than chance. Seven
seconds was the best window length for both XGBoost and SVM
classi�ers to di�erentiate pre- and post-adjustment responses. Clas-
si�ers trained for this purpose are a promising tool for clinical
decision making.

While the two approaches yielded similar results, they di�ered
in the number of features used and in consistency of their �nd-
ings. XGBoost used fewer features at the cost of slightly increased
variability across trial lengths. While SVM accuracies ranged from
0.69 to 0.75, XGBoost accuracies ranged from 0.64 to 0.76. In terms
of feature selection in 6 trials, XGBoost models always assigned
high weights to the mean AU12 intensity, mean facial displace-
ment and mean head displacement, whereas SVM always retained
highly correlated features (mean AU6 velocity, mean AU12 inten-
sity and mean AU12 velocity) in �nal feature sets. In the future, we
are interested to see whether this pattern is repeated in additional
participants and look for better feature representations.
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