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Abstract— Neuromodulation therapy, specifically Deep Brain
Stimulation (DBS) of the ventral capsule/ventral striatum
(VC/VS), is promising treatment for severe and intractable
obsessive-compulsive disorder (OCD). To assess treatment re-
sponse to DBS, reliable biomarkers are needed. We explored
the hypothesis that facial action units and head dynamics in an
interview context reveal severity of OCD, related depression,
and DBS energy in participants undergoing DBS treatment.
Participants were 5 patients (3 females, 2 males) with implanted
DBS to VC/VS. They were recorded during brief open-ended
interviews by a clinician at pre- and post-surgery baselines
and then at 3-month intervals following activation of the
DBS electrodes. Facial action units and head dynamics were
assessed using AFAR (Automatic Facial Affect Recognition).
OCD severity was assessed using clinical interview (YBOCS-II)
and depression symptoms were assessed using participant self-
report (BDI). After testing for multicollinearity and dropping
highly-correlated features, a linear mixed-effects model using
chi-square feature selection predicted 61% of the variation in
YBOCS-II; 59% of the variation in BDI; and 37% of the
variation in delivered energy by DBS to VC/VS. These findings
suggest that automatically detected facial action units and head
dynamics are potential biomarkers of OCD, depression severity,
and DBS energy.

I. INTRODUCTION

Obsessive-compulsive disorder (OCD) is characterized by
obsessions and related compulsions. Obsessions are repet-
itive, intrusive, and distressing thoughts. Compulsions are
recurrent, ritualistic behaviors that an individual feels driven
to perform. Obsessive thoughts typically are briefly re-
lieved by compulsive behavior (e.g., repetitive hand washing
or checking window and door locks) and then resume.
Obsessive-compulsive behavior can occur multiple hours per
day and significantly impact adaptive functioning. While
cognitive-behavioral therapy (CBT) and medication often are
successful in providing relief, they are unsuccessful in about
25% of cases [30], [27]. Severe OCD that is unresponsive
to treatment is referred to alternatively as treatment-resistant,
refractory, or intractable. In patients with intractable OCD,
deep brain stimulation (DBS) of the ventral striatum (VS)
is effective in 52% of patients. An additional 17% respond
partially [17].

Fig. 1. Frontal view of an OCD patient’s brain. The ventral striatum
(target area) is in yellow. The straight lines (purple) are wire leads,
each bearing a single electrode topped with an electrical contact. These
leads connect to a pacemaker-like device implanted in the chest (not
shown) that delivers electrical impulses that ease the patient’s distress-
ing thoughts and unwanted behaviors. For 3D view and fuller descrip-
tion, see https://directorsblog.nih.gov/2021/08/05/the-amazing-brain-deep-
brain-stimulation-for-ocd/

In DBS, electrodes are implanted deep in the brain, in an
area known as the ventral capsule/ventral striatum (VC/VS).
Leads from the electrodes are connected to a pacemaker-like
device (known as an internal pulse generator, or IPG) that is
powered by a battery implanted in the chest. Figure 1 shows
an image of the brain of a study participant with the VC/VS
highlighted.

Because the VC/VS is a part of the reward circuit, stimu-
lation affects appetitive behavior and emotion processes [28].
Over-stimulation of VC/VS may eventuate in hypomania or
mania, which can have deleterious consequences and result
in hospitalization, selecting the most suitable stimulation
level is critical to optimizing treatment. Currently, DBS
programming (i.e., adjustments) for OCD is made largely
on the basis of subjective report during office visits with a
psychiatrist or neurologist (open-loop paradigm) [32]. While
useful, subjective judgments are idiosyncratic and difficult to
standardize. Additional factors such as failed targeting and
patient heterogeneity add to the complexity of the problem
and reduce the efficacy of treatment [29], [32].978-1-6654-3176-7/21/$31.00 ©2021 IEEE



A potential solution would be to implement a DBS
paradigm in which stimulation level adaptively changes in
response to concurrent severity of OCD in a closed-loop
paradigm. To achieve closed-loop modulation of DBS in
response to continuous changes in OCD threat, objective,
quantifiable, repeatable, and efficient biomarkers of OCD
symptom severity are essential. A closed-loop system us-
ing objective biomarkers could maximize treatment efficacy
while minimizing potential side effects.

Facial action units (AUs) and head movements [9] have
been found to be markers of psychological states [4], [3], [7],
[18]. For this reason, they are promising behavioral biomark-
ers of OCD symptom severity. Examples of AUs include AU
6 (orbicularis oculi, which raises the cheeks in smiles and in
pain), AU 12 (zygomatic major, which pulls the lip corners
obliquely in smiling), AU 14 (buccinator, which tightens
the lip corners in contempt and in smile controls), AU 17
(mentalis, which raises the chin boss in negative emotion
and smile controls), and AU 45 (levator palpebrae, blinking).
Head dynamics (referred to in FACS as action descriptors)
include head pitch and yaw. Automatic detection of AUs and
head movements [10], [26], [2] have distinguished between
positive and negative emotion [18] occurrence and severity
of depression [7], and autism spectrum disorder [23]. They
could provide reliable and efficient biomarkers essential for
a closed loop DBS in social contexts, such as unstructured
interviews.

Automatic detection of facial AUs and head dynamics
has been used to detect disorders that include bipolar [33],
dysmorphic [13], depression [7] and anxiety [15]. In the DBS
context, the ultimate goal is to predict symptom severity.
Facial actions and head dynamics have shown promise in de-
tecting depression [25], [19], but have yet to be investigated
for OCD occurrence and severity. Two preliminary studies
suggest that DBS of VC/VS in OCD patients is related
to facial AUs [5] and may differentiate between different
stimulation levels [8].

To our knowledge, the present paper presents the first use
of facial AUs and head dynamics in unstructured interviews
in relation to OCD severity, depression severity, and level
of DBS stimulation. AUs and head dynamics were mea-
sured automatically [12]. OCD severity was measured via
structured interviews; depression severity was assessed by
participant self-report; and AUs and head dynamics were
measured automatically [12]. DBS stimulation as measured
from contact sensors or Bluetooth and quantified as deliv-
ered energy, as defined below. We investigated synchronized
variation between visual expressions, OCD and depression
symptom severity, and DBS stimulation.

The clinical trial of 18 months duration was structured as a
single-subjects with replications study with each participant
serving as their own control. Given the substantial costs and
subject-intensive effort of DBS studies, a between-subjects
design with many participants was not feasible. Participants
are a highly select group, the intervention entails implanting
a device deep in the brain with a connected battery pack in
the chest cavity. A multidisciplinary team of psychiatrists,

neurosurgeons, clinical psychologists, neuro-scientists from
multiple universities and from Medtronics, bio-engineers,
and nursing and research staff are actively involved in all
phases of the study. Given the nature of the research, program
officials from NIH and FDA are closely involved as well.

The research questions were:
RQ1- Are facial AUs and head dynamics good predictors

of OCD symptom severity?
RQ2- Are facial AUs and head dynamics good predictors

of depression symptom severity, which often co-occur with
OCD?

RQ3- Are facial AUs and head dynamics related to total
electrical energy delivered by the DBS device?

II. METHODOLOGY

A. Study Setup and Protocol

This study is from an ongoing clinical trial in which DBS
of VC/VS is used as a remedy for treatment-refractory OCD.
To date, 5 patients (3 females, 2 males) have enrolled. Four of
them have completed at least 15 months of the study (Table
I) and are the focus of this report. Two models of DBS, both
from Medtronic (Minneapolis, MN, United States), are used
in the clinical trial: Percept PC+S for the first two patients
and Activa PC+S for the later three. A brief description of
the study protocol is as follows.

Inclusion criteria for the clinical trial were: 1) Have failed
to respond to multiple evidence-based treatments (cognitive
behavioral therapy and medication); 2) Severe OCD as
measured by a severity score greater than 27 on the Yale-
Brown Obsession Compulsion Scale-I (YBOCS-I)) (scale of
0-40).

Participants went through a pre-operation evaluation of
about a month duration. They then had bilateral DBS
electrodes implanted in their VC/VS. Following recovery
from neurosurgery, the DBS was turned on. Afterward, the
patient would either have in-person or virtual visits monthly.
Each visit started with an unstructured interview in which a
clinician asked a set of open-ended questions. The interviews
were 3 to 8 minutes in duration and were followed by
assessment of symptom severity using the YBOCS-II [31].

A GoPro camera and high-resolution microphone were po-
sitioned about 10 to 15 degrees to a frontal view and recorded
the participant’s face and torso. A second GoPro and separate
camera recorded the interviewer. Later in the day or day
following, the DBS stimulation parameters were titrated as
needed in a DBS programming session. Six months into the
study, the patient received CBT (cognitive behavior therapy)
for two months. Among all available interview sessions
(typically 18-22), 7-8 interview sessions at regular intervals
were selected and analyzed: baseline 1 (before implantation),
baseline 2 (after surgery but before the DBS was activated),
and then every 3 months. The availability of the selected
interview sessions for each patient is shown in Table I.
To analyze the within-session differences, each session was
divided into two halves and analyzed separately. Therefore,
the dataset was consisted of 66 samples rather than 33 (total
number of sessions).



In the DBS context, the delivered electrical energy is
controlled via parameters that include voltage or current
amplitude, pulse width, and frequency. Measurement of these
parameters was influenced by variability in battery perfor-
mance, failure to output an ideal-shape pulse, and changes
in resistance of the brain region . Thus, the actual delivered
energy might slightly differ from the one calculated. The total
electrical energy delivered (TEED) per second (i.e., power)
was calculated as shown in [24]:

TEED(W ∗ 1s) = I(A)2.PW (sec).f(Hz).R(Ω), (1)

where the units for power, current, pulse width, frequency,
and resistance are Watt, Ampere, second, Hertz, and Ohm,
respectively. Throughout the clinical trial, the frequency of
the stimulation pulses was kept constant and equal to 150.6
Hz. Due to the nature of this study which is predicting the
variation in TEED, the constant term was dropped.

B. Calculated Visual Expressions

Faces in the video were tracked and normalized using a
real-time face alignment software that accomplishes dense
3D registration from 2D videos and images without requiring
person-specific training [21].

Automatics Facial Affect Recognition (AFAR) centers,
scales, and normalized faces to an interocular distance of
80 pixels and standardized face size. The version of AFAR,
used in this study, was trained on the EB+ dataset (an
expanded version of BP4D+ [34]), in which participants
interact with an experimenter in a variety of emotion related
tasks. Reliability of AFAR in EB+ was tested using k-fold
cross validation. Average free-margin kappa was 0.75 and
AUC 0.73 [11]. Cross-domain generalization was assessed
by testing AFAR in Sayette GFT. Average free-margin kappa
was 0.49 and AUC 0.66, which represent moderate cross-
domain generalizability. Because test results in GFT were
likely attenuated by the larger head motion and lower video
resolution in GFT, these comparisons provide a conservative

TABLE I
THE ANALYZED INTERVIEW SESSIONS. BASELINE 1: BEFORE

IMPLANTATION. BASELINE 2: AFTER IMPLANTATION BUT BEFORE DBS
ACTIVATION. P1-P5: PATIENTS 1 TO 5.

estimate of the cross-domain generalizability in the current
study. EB+ and the clinical trial were more alike than
EB+ and GFT. EB+ and the clinical trial both used higher
resolution video and were more similar in their more limited
head motion.

AFAR is used to assess head dynamics and the intensity of
7 facial AUs: AU1 (inner brow raiser), AU6 (cheek raiser),
AU10 (upper lip raiser), AU12 (lip corner puller), AU14
(dimpler), AU17 (chin raiser), and AU45 (blinking). Another
predictor, positive affect, is defined as the combination of
AU6 and AU12. Overall 10 facial AUs and head dynamics
time series were produced. Then, for each facial AU, the
percentage of frames with the intensity of B-level and higher
(2 in range of 0-5) was calculated. In a word, the feature
showed the percentage of time that the AU was activated
during an interview. For head dynamics, root mean square
(RMS) value was calculated as the feature.

C. Machine Learning Techniques

Because the ten predictors were correlated, it was impor-
tant to control for multicollinearity. Thus, on the first step,
predictors with more than 0.7 correlation were found, and the
one with higher correlation to the dependant variable (e.g.,
YBOCS-II) retained in the model. The chi-square feature
selection method then was used to select the best subset of
predictors [20]. The chi-square method ranked all predictors
based on their significance level (p-value) in the prediction
of the dependent variable. To avoid any possible over-fitting
and keep the number of predictors limited, only the best 5
predictors were retained. Doing so, the number of predictors
was kept at less than 8% of sample size.

Due to the nature of study design, which is a longitudinal
single-subject study with repetition, implementation of a sin-
gle linear regression model for all samples (and all subjects)
would neglect subject-level differences. Assessments are
nested within subjects. To take into account both inter- and
intra-subject variation, we used a mixed effect model [14]. A
mixed-effects model consists of two sets of variables: fixed
(to capture intra-subject variability), and random (to capture
inter-subject variability). Formula 2 shows the mixed-effects
model with ‘subject’ as the random variable and five other
predictors nested inside the ’subject’ variable.

Output ∼ 1 + pred1 + ...+ pred5 + (1|subject) + ε (2)

III. RESULTS

AU6, AU12, and the positive affect composite (AU 6+12)
were highly correlated to each other (r≈0.97). To avoid
multicollinearity, AU 6 and the positive affect composite
were omitted as predictors. Additional predictors were inter-
correlated below the threshold of 0.70.

A. Prediction of OCD Symptom Severity

The chi-square ranked all features to predict OCD symp-
tom severity (YBOCS-II). Table II shows the top 5 predic-
tors, their coefficients, and their significance levels. All were
statistically significantly (p-value <0.05) in the prediction of



YBOCS-II. The first row of Table V shows the goodness (R-
squared) of models in prediction of OCD symptom severity
for each patient individually as well as for all patients. Figure
2 demonstrates the RMS of head displacement vs. YBOCS-
II score while each subject is denoted by a distinct color.
Moreover, the trend of change in each patient’s data is shown
with a consistent-color dash line using linear regression.

B. Prediction of Depression Symptom Severity

The chi-square ranked all features to predict depression
symptom severity (BDI). Table III shows the top 5 predictors,
their coefficients, and their significance levels. Patient ID,
head displacement, and AU17 are statistically significant
(p-value <0.05) in the prediction of BDI, and adding or
dropping the other leaves model prediction unchanged. The
second row of Table V shows variance accounted for (R-
squared) of models in prediction of depression symptom
severity for each patient separately and for all patients. Figure
3 demonstrates the percentage of time that AU 12 was
activated vs. BDI score while each subject is denoted by a
distinct color. Moreover, the trend of change in each patient’s

TABLE II
BEST PREDICTORS OF YBOCS-II, THE COEFFICIENTS, AND THEIR

SIGNIFICANCE LEVEL*. SIGNIFICANT EFFECT (<0.05)

Selected Predictor Coeff p-value
Patient ID N/A <0.001∗

Head Displacement -3.2 <0.001∗
AU17 -23.8 0.02∗
AU10 -15.5 0.03∗
AU14 -18.4 0.04∗

TABLE III
BEST PREDICTORS OF BDI, THE COEFFICIENTS, AND THEIR

SIGNIFICANCE LEVEL. *. SIGNIFICANT EFFECT (<0.05)

Selected Predictor Coeff p-value
Patient ID N/A <0.001∗

Head Displacement -2.4 0.001∗
AU17 -36.3 0.03∗

Blinking Rate -12.6 0.2
AU1 5.5 0.3

TABLE IV
BEST PREDICTORS OF DELIVERED ENERGY, THE COEFFICIENTS, AND

THEIR SIGNIFICANCE LEVEL *. SIGNIFICANT EFFECT (<0.05)

Selected Predictor Coeff p-value
Patient ID N/A <0.001∗

Head Displacement 0.21 <0.001∗
AU17 2.42 0.04∗
AU14 14.9 0.1
AU12 5.8 0.2

TABLE V
R-SQUARED VALUE IN PREDICTION OF YBOCS-II, BDI AND

DELIVERED ENERGY TO VC/VS.

P1 P2 P3 P4 P5 All
YBOCS-II 40% 44% 43% 42% 3% 63%

BDI 50% 9% 37% 15% 30% 59%
Energy 42% 56% 31% 56% 2% 37%

data is shown with a consistent-color dash line using linear
regression.

C. Prediction of Delivered Energy

The chi-square ranked all features to predict TEED. Table
IV shows the top 5 predictors, their coefficients, and their
significance level. Patient ID, head displacement, and AU17
are significant at p-value <0.05). The third row of Table V
shows the variance accounted for (R-squared) of models in
prediction of TEED to VC/VS for each patient separately as
well as for all patients.

IV. DISCUSSION

Facial AUs and head dynamics performed well in the
prediction of OCD symptom severity. They predicted 63%
of variation in YBOCS-II scores (Table V, first row). The
R-squares varied across subjects, which suggests individual
differences. The high overall R-square could be interpreted as
the ability of the mixed-effects model to predict the between-
subject differences.

Treatment-refractory OCD is commonly associated with
depression. We found that OCD symptom severity (YBOCS-
II) and depression severity (BDI) were highly correlated
(r=0.68). In light of that, facial AUs and head dynamics
were expected to perform well in the prediction of depres-
sion severity. Nearly the same set of predictors (Table III)
explained 59% of variation in BDI scores. Hence, facial AUs
and head dynamics provided reliable and efficient biomarkers
of OCD and depression severity. A next step would be
to evaluate their contribution in a closed-loop system for
regulating DBS in relation to continuous variation in OCD.

While the developed models for YBOCS-II and TEED
explain good percentages of variability in the dependant
variables, the obtained R-square for patient 5 was an ex-
ception. A reason may be that patient 5 completed only 4
of 8 assessments. Lack of data may have attenuated their
findings. Once all assessments are completed, they may well
conform to the experience of the other patients.

In addition to OCD and depression, the facial AUs and
head dynamics were used to predict the TEED to VC/VS. To-
gether they explained 37% of the variation. The relationship
between behavior and DBS energy was consistent with the
hypothesis that AUs and head dynamics provide a behavioral
biomarker of OCD and brain activity.

All three developed mixed-effects models shared three
significantly important predictors: Patients’ ID, head dis-
placement, and AU17.

Patient’s ID was a nominal variable that enabled the
mixed-effects model to compensate for the subject-level
differences. As the most important predictor in all three cases
was the patient’s ID, it could be concluded that the subject-
level differences were significant across the 5 patients. A
significant difference in facial AUs and head dynamics
response across patients was expected. This finding was in
line with the interviewer’s observations that patients differed
in expressivity.



Fig. 2. RMS of Head displacement vs. YBOCS-II score. Each patient is
denoted by a distinct color. Each point represents half a session.

While subject-level differences are often ignored, Figure
3 demonstrates their importance. If the subject-level differ-
ences were ignored, there would be a spurious positive cor-
relation between AU 12, BDI and YBOCS-II, which means
more smiling during severe depression. When individual
differences are taken into account, however, the correlation
between AU 12 and depression is found to be negative, which
is consistent with previous research [16].

Head displacement had a negative correlation with both
YBOCS-II (Figure. 2) and BDI, which suggests that patients
became more active and animated as their symptom severity
decreased. Several head motions were shown to be associated
with arousal [22], thus higher head displacement levels could
be interpreted as higher arousal or expressiveness.

AU17 was negatively correlated (both on the subject level
and overall) to YBOCS-II and BDI. Because AU17 is usually
present in negative states such as sadness or distress, the
negative correlation with OCD and depression severity was
counter intuitive. Given the high correlation among many
predictors, it is difficult to interpret findings for any one.
Further research will be needed to disambiguate specific
signals.

As a next step, additional types of predictors, such as
whole body movement and audio features could be consid-
ered. Audio features such as loudness and pitch have shown
to be effective in detecting depression [6]. Including them
in predictive models could provide additional insights and
more robust set of potential behavioral biomarkers.

V. CONCLUSIONS

To our knowledge, this paper presents the first use of
facial AUs and head dynamics to predict OCD symptom
severity and total energy (TEED) from DBS to the VC/VS.
Five participants treated with implanted DBS were video-
recorded in unstructured interviews regularly for a period
of up to 18 months. Thirty three interview sessions in all
were analyzed. Eight facial AUs and two measures of head
dynamics were tested to find reliable and efficient biomarkers
of OCD symptom severity and total energy. A subset of facial
AUs and head dynamics explained 61% of the variation in

Fig. 3. Percentage of AU12 Activation vs. BDI score. Each patient is
denoted by a distinct color. Each point represents half a session.

the OCD symptom severity, 59% of depression symptom
severity, and 37% of variation in total energy (TEED) to
the VC/VS. Of the biomarkers, head displacement was the
strongest. Participants become increasingly expressive as
their symptom levels decreased, which is consistent with
previous research in depression [1], [7]. While the obtained
results are promising, testing additional predictors such as
auditory features and social interaction effects could further
increase prediction of symptom severity and total energy.
The findings suggest that behavioral biomarkers could be
important imputs to a closed-loop system for DBS treatment
of OCD. A closed-loop system informed by behavioral and
physiological signals would enable continuous modulation of
DBS in response to level of OCD threat for optimal symptom
reduction.
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