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Abstract—Smiles are highly variable. In some, contraction
of the orbicularis oculi raises the cheeks and amplifies their
intensity. In others, smile controls counteract the oblique pull
of the zygomatic major, alter their shape, and decrease their
intensity. Despite this variability, some features appear to be
stereotypic. These features include a high correlation between
the amplitude and velocity of smile onsets and same for smile
offsets. The larger a smile’s amplitude, the greater its velocity.
This dependence is referred to as ballistic timing. In two relatively
large publicly available databases (EB+ and Belfast), we tested
the hypothesis of ballistic timing of smile onsets and offsets.
We found high and consistent non-linear correlations between
amplitude and velocity of both onsets and offsets that were
robust to individual differences in persons (gender and ethnicity),
context, presence or absence of the Duchenne marker, and
country of residence (United States, Ireland, Peru). All R2

exceeded 0.85. The findings were highly consistent with ballistic
timing. They have implications for detecting smiles that may be
posed (which have been found to violate ballistic timing) and for
realistic synthesis of smiles in social robots and virtual humans.
Smiles that depart from ballistic timing are likely to be perceived
as false or uncanny.

Index Terms—Social signaling, ballistic timing, smiles, virtual
humans and social robots

I. INTRODUCTION

Facial expressions play a key role in human communication.
They communicate emotion, intention, individual differences,
action readiness, group affiliation, and a range of other
meanings. Among facial expressions, smiles (zygomatic major
contraction, AU 12 in FACS [1], [2]) are among the most
frequent. Differences in appearance and timing among smiles
communicate enjoyment [3], embarrassment [4], [5], triumph
[6], dominance or affiliation [7], intense pain [8], and negative
affect [9]. Despite such variability, are there consistent signals
in the smile display that are robust to context, emotion,
intention, and individual differences in people?

From an evolutionary perspective, evolved social signals
result from selective pressure for conspicuous, stereotyped,
and redundant communication [10]. Stereotyped signals afford
reliability of communication and are easily recognized across
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varied contexts and persons. Redundant and conspicuous sig-
nals maximize the likelihood that signals will be recognized
and ensure their efficiency in communication [10]. Are there
features of smiles that are consistent with evolved social
signals [11]?

Smile onset, defined as the largest continuous increase in
the displacement of the lip corners, is a prime candidate.
[12] found that observers perceive maximum differences in
happiness intensity within a third of a second, which is far
less time than required to perceive the ultimate intensity of the
display. The velocity of the movement was likely sufficient to
signal the smile’s ultimate intensity. This finding among others
suggests that smile amplitude and velocity are tightly coupled
in automatic movements. From amplitude or velocity one may
infer the other.

The timing of automatic movement is referred to as bal-
listic timing. Ballistic timing is a widely-occurring biological
constraint that has been observed across vertebrates, including
ants [13], crickets [14], salamanders [15], and humans [16],
[17]. We tested the hypothesis that ballistic timing holds for
smile onsets and offsets and is robust to gender and ethnicity,
context, and national differences. Specifically, we address the
following questions:

1) Are onset amplitude and velocity of smiles highly cor-
related?

2) Are offset amplitude and velocity of smiles highly cor-
related?

3) Are these correlations robust to individual differences in
gender, ethnicity, presence of the Duchenne (i.e., cheek
raise, or AU 6 in FACS), context, and country. Countries
included the U.S., Ireland, and Peru.

II. RELATED WORK

Smiles consist of an onset, one or more peaks, and an
offset. Onsets and offsets have been detected by both manual
inspection (e.g., using FACS [2]) and automatic measurement.
Automatic measurement has included electromyography [18]
and computer-vision based approaches [17], [19]. Smile peaks
have been detected automatically as well [20]. We focus on
onsets and offsets of spontaneously occurring (i.e, not posed)
smiles.

978-1-6654-5908-2/22/$31.00 ©2022 IEEE



In ballistic timing, velocity and amplitude are highly cor-
related. In an early study, Schmidt and Cohn [17] found
strong evidence for ballistic timing of smile onsets and offsets
in both social and solitary contexts. While amplitude and
velocity differed markedly between contexts (smiles in a social
context were more intense), the non-linear correlation between
velocity and amplitude was similarly high in both contexts.
Similarly, while offset duration was longer in Duchenne smiles
than in non-Duchenne smiles, the non-linear correlation be-
tween velocity and amplitude was again comparably strong.
Thus, while contexts differed in amplitude and duration, the
strong non-linear correlation between amplitude and velocity
remained stable.

Cohn et al. [18] studied the relation between amplitude and
duration during the onset phase of spontaneous and posed
(also referred to as deliberate) smiles. Spontaneous smiles are
automatic movements, while posed ones are not. Spontaneous
but not posed smiles evidenced a strong relation between onset
amplitude and duration, consistent with ballistic timing. This
difference in timing was sufficient to discriminate between
spontaneous and posed smiles with over 90% accuracy.

Differences in the morphology and dynamic characteristics
of certain smiles, such as those perceived as amused, polite,
and embarrassed have been explored [4]. Of these smile types,
smiles perceived as amused more often had longer duration,
larger amplitudes, higher maximum velocity, and more abrupt
onsets and offsets. Smiles perceived as polite were smaller
in duration than those perceived as embarrassed. Perceived
polite smiles tended to have smaller amplitude, were more
likely to have brief duration, and tended to have gradual onset
and offset. Schmidt et al. [19] found consistent differences in
velocity and intensity between Duchenne and non-Duchenne
smiles.

More recently, Hoque et al. [21] have shown differences in
the duration of smiles and how that is affected by social usage.
They controlled the nature of smiles expressed by employees
during their interactions with customers. Employees were
instructed to express either neutral expressions or polite smiles
throughout the interaction or empathetic amused smiles when
they fit the situation. They found that amused smiles were
longer than polite smiles. When shared and non-shared smiles
were compared, shared amusement smiles were longer than
non-shared amusement smiles.

These studies suggest that while smiles differ in amplitude,
duration, and velocity in relation to their perceived meaning
(e.g., embarrassed versus enjoyment) and context, their timing
with respect to the correlation of velocity and amplitude in
both onset and offset phases remains highly consistent. Nev-
ertheless, evidence for ballistic timing across different contexts
and persons remains tentative. The number of participants in
these studies has been relatively small; individual differences
in gender, ethnicity, and nationality have been unexplored;
and robustness of ballistic timing to differences in emotional
context have been neglected. To address the limitations, we
turned to two relatively large and varied databases to test the
hypothesis that ballistic timing in smile onsets and offsets is

robust to individual differences in participants, context, and
country.

III. MATERIALS

A. Datasets

Generalization of statistical studies is crucial towards under-
standing robust (and possibly universal) mechanisms involved
in human interactions. Open-source datasets play a big role in
performing such studies. However, the open-source datasets
differ in terms of their experimental design, data collection,
subjects’ diversity and availability of reliable manual anno-
tations. Databases such as DISFA [22], CK+ [23], UNBC-
McMaster [24] designed to induce emotions are limited in
terms of the sample size or the range of contexts to study the
effects across context and demographic factors. Despite such
challenges, we use two different relatively large databases to
analyze the timing ofsmiles. Both databases contain subjects of
diverse ethnicity in tasks intended to elicit different emotions.
The choice of database is motivated to capture the effects of
gender, ethnicity and context on the temporal dynamics of
smiles at scale.

TABLE I: Distribution of subjects in EB+ and Belfast.

Subjects N
EB+ 195
Belfast 153
EB+ percent female 58.80%
Belfast percent female 42.40%
EB+ Non-Caucasian 51.20%
Belfast Non-Caucasian 17.70%

TABLE II: Distribution of smiles by context in EB+ and
Belfast.

Onset Offset
EB+

Duchenne
Anger 18 25
Embarrassment 86 85
Fear 64 60
Amusement 105 105

Non-Duchenne
Anger 13 6
Embarrassment 13 14
Fear 10 14
Amusement 12 12

Belfast
Fear 103 103
Amusement 140 140

The EB+ database [25] consists of 195 subjects of di-
verse ethnicity (Caucasian, Asian, African American, His-
panic, Middle-Eastern and Indian) and includes both male and
female subjects. We focused on four contexts: 1) Talking to
an experimenter while they tell a joke; 2) Being insulted by
the experimenter; 3) Playing a silly game; and 4) Anticipat-
ing physical threat. These contexts were intended to elicit
amusement, anger, embarrassment, and threat, respectively.
The intended emotions may or may not have been induced.



TABLE III: Description of contexts in EB+ and Belfast.

Context EB+ Belfast
Anger Experience harsh insults from the experimenter. N/A

Embarrassment Play a game to improvise a silly song. N/A
Fear Anticipate and experience a physical threat. Retrieve a sweet from a box with warning signs.

Amusement Talk to the experimenter and listen to a joke. Watch a comedy routine in the presence of the experimenter.

Fig. 1: Top to bottom: Figure showing AU 12 intensity annotation and automatically tracked left, right, and mean lip corner
displacements. The initial frames of onset and offset phases are delineated with red lines. The final frames of the onset and
offset phases are delineated with green lines.

For simplicity, we refer to these contexts by the emotions they
were intended to elicit whether or not they did.

The Belfast Induced Natural Emotion Database [26] (here
on referred to as Belfast) also contains contexts intended to
elicit various emotions either through either active or passive
tasks. An example of a passive task would be watching a video
clip. As with EB+, we refer to contexts with respect to the
emotions they were intended to elicit.

Each of the contexts (referred to as tasks in EB+ and
emotion targeted in Belfast) was intended to elicit the tar-
get emotion, which may or many not have happened. The
Belfast database was originally divided into three different
sets depending on ethnicity of the subjects, sociality of the
tasks and the targeted emotions. Because we are interested in
ethnic differences of smiling, we combine the sets–1&3 (set-
1 contains recordings of social amusement context collected
in Ireland and set-3 contains recordings of social fear and
amusement collected in both Ireland and Peru). This would
provide us subjects from different ethnicities in social contexts.
Table-III provides a brief summary of tasks involved in each
context in EB+ and Belfast databases used in our investigation.
In EB+, smiles were included if intensity was B level or
higher in intensity and AU 4 (corrugator contraction) and AU 9
(nose wrinkling) were absent. 146 out of 195 subjects met this
inclusion criteria. Because smile intensity and co-occurring
actions (e.g., Duchenne marker) were not differentiated in
the Belfast database, all smiles were included regardless of

intensity and co-occurring actions.
We present the distribution of subjects and their demograph-

ics in EB+ and Belfast in Table-I. The distribution of smiles
across contexts, and presence of the Duchenne marker across
both databases are tabulated as Table-II.

B. Definition of a smile

Onset is defined as the largest continuous increase in lip
corner displacement. Offset is similarly defined as the largest
continuous decrease in lip corner displacement. Unlike [17]–
[19], onsets and offsets could correspond to the same or
different peaks within the same smile. An example can be
seen in figure-1.

We detect the onset, peak, and offset of each smile using an
automated approach to lip corner tracking. This is similar to
some of the existing works [17]–[19] and described in detail
in section-III-D.

C. Duchenne smiles

Duchenne smiles [27] are comprised of AU 12 (Zygomatic
major activation), which raises the lip corners obliquely and
AU 6 (Orbicularis oculi activation), which raises the cheeks,
narrows the eye aperture, and may cause wrinkling lateral to
the eye corners.

In FACS, AU intensity can vary on a five-point ordinal scale
from A (trace level) to E (extreme). Smiles were defined by
AU 12 intensity of B or higher. The Duchenne marker was
defined similarly, as AU 6 intensity of B or higher. Because



(a) Relation between amplitude and velocity in smile onsets in
EB+. Slope is significant at p < 0.001.

(b) Relation between amplitude and velocity in smile onsets in
Belfast. Slope is significant at p < 0.001.

(c) Relation between amplitude and velocity in smile offsets in
EB+. Slope is significant at p < 0.001.

(d) Relation between amplitude and velocity in smile offsets in
Belfast. Slope is significant at p < 0.001.

Fig. 2: Ballistic timing in smiles captured during onset and offset phases in EB+ (left) and Belfast (right). Each figure presents
the curvilinear regression formulation and resultant explained variance (R2).

the onset and offset phases for a given smile may be separated
by more than one peak, the onset and offset phases of a smile
may differ with respect to inclusion of the Duchenne marker.

D. Landmarks and displacement

To identify left and right lip corners, we use AFARtoolbox
[28]–[30]. Lip corners are corrected for rigid motion (rotation,
translation and scaling) and projected to 2D coordinates. We
identify the mouth center as the mid-point of the left and
right lip corners in the first frame of the AU annotated
frames. We define the mouth width as the Euclidean distance
between the left and the right lip corners from the same
first frame. Displacement of a lip corner is measured as
the Euclidean distance between the mouth center and the
lip corner. Following the convention from [18] and [19] we
normalize the lip corner displacements with the width of the
mouth to cater to subjects of different shapes. All normalized
lip corner displacements are smoothed using 4523H smoothing
using R‘s sleekts package1.

[18] used the right lip corner and [19] used the mean of the
lip corners to capture the temporal progress of smiles. All these

1https://cran.r-project.org/web/packages/sleekts/sleekts.pdf

works have primarily characterised the temporal progress us-
ing three dynamics–duration, amplitude and maximum velocity
(also referred as speed [18]). We use the mean of the right
and left lip corner displacements to identify smiles (onsets
and offsets) and extract their temporal dynamics.

E. Temporal Dynamics

a) Duration: Time taken for the largest continuous lip
corner displacement increase. Similarly for offsets, it is defined
as the time taken for a smile for the largest continuous
lip corner displacement decrease. We measure duration in
seconds.

b) Amplitude: The largest continuous increase (or de-
crease) in the lip corner displacement during onset (or offset).

c) Maximum velocity: Maximum displacement between
successive frames during onset (similarly for offset). This is
also referred to as velocity (or speed in [18]).

Temporal dynamics involves three (duration, amplitude and
maximum velocity) characteristic measures of smiles. In this
study, we focus on amplitude and velocity because of their
relevance to the ballistic timing.



TABLE IV: Explained variance(R2) across contexts for the ballistic timing in EB+ and Belfast. All regression slopes are
significant at p <0.001. Notice that Belfast does not have anger and embarrassment contexts and hence the N/A.

Onset Offset
Anger Embarrassment Fear Amusement Anger Embarrassment Fear Amusement

EB+ 0.934 0.922 0.899 0.896 0.929 0.924 0.902 0.905
Belfast N/A N/A 0.896 0.921 N/A N/A 0.889 0.907

TABLE V: Explained variance(R2) across gender for the
ballistic timing in EB+ and Belfast. All regression slopes are
significant at p <0.001.

Onset Offset
Male Female Male Female

EB+ 0.900 0.909 0.906 0.912
Belfast 0.903 0.914 0.894 0.903

TABLE VI: Explained variance(R2) across ethnicities for the
ballistic timing in EB+ and Belfast. All regression slopes are
significant at p <0.001.

Onset Offset
Caucasian non-Caucasian Caucasian non-Caucasian

EB+ 0.917 0.904 0.910 0.903
Belfast 0.900 0.932 0.902 0.888

TABLE VII: Explained variance(R2) across expressions for
the ballistic timing in EB+ and Belfast. All regression slopes
are significant at p <0.001. Notice that Belfast does not have
AU6 annotations and hence the N/A.

Onset Offset
Duchenne Non-Duchenne Duchenne Non-Duchenne

EB+ 0.910 0.867 0.914 0.892
Belfast N/A N/A N/A N/A

IV. RESULTS

Our goal is to evaluate ballistic timing in relation to context,
gender, ethnicity, and presence of the Duchenne marker. We
first perform a curvilinear regression to evaluate the hypothesis
of ballistic timing. We then evaluate whether timing varies
with context, gender, ethnicity or presence of the Duchenne
marker. As noted above, because the Duchenne marker was not
annotated in the Belfast database, comparisons of Duchenne
and non-Duchenne smiles were limited to EB+ (refer section-
III-C for the definition).

A. Evaluation of ballistic timing

We test for ballistic timing in both smile onset and offset
phases. Ballistic timing refers to a strong positive relation
between smile amplitude and velocity. Following [17], we use
curvilinear regression to test the hypothesis of ballistic timing.

a) EB+: We present the relation between amplitude and
velocity for onset phase and offset phase as figures-2a and 2c
respectively. We notice that the curvilinear regression model
in the onset phase (y = 0.868x0.5) has a high explained vari-
ance (R2 = 0.906) suggesting a strong association between
amplitude and velocity. The explained variance (R2 = 0.907)
for the offset phase curve (y = 0.820x0.5) is similar to that
for the onset phase.

b) Belfast: In the onset phase, the amplitude-velocity
relation is captured by a y = 1.168x0.6 power curve with high
explained variance R2 = 0.908. This can also be observed
in offset phase at y = 1.138x0.6 with R2 = 0.897. The
corresponding regression plots are figures-2b and 2d.

We notice that the range of explained variance (R2) is
similar across both datasets. Similar to [17] we notice that
both the onset and offset phases have similarly high explained
variance in both EB+ and Belfast.

B. Effect of gender, ethnicity, context and Duchenne smiles on
ballistic timing

Using the same curvilinear regression as above, we evaluate
the effect of context, gender, ethnicity and expression. We
perform regression for each level of these factors and use
the correlation (r =

√
R2) derived from the correspond-

ing explained variance to compare shared variance between
amplitude and velocity between levels. We perform Fisher‘s
r − to − Z transformation and significance test using the
cocor [31] package for independent groups to evaluate the
differences in correlation between the levels.

We hypothesize that ballistic timing is consistent across gen-
der, ethnicity, context and the presence of Duchenne marker.

1) Gender: We evaluate the effect of gender on the ballistic
mechanisms between amplitude and velocity through curvilin-
ear regression models for each level (male or female). Table-V
shows that the timing is prevalent across genders in both EB+
and Belfast. Fisher‘s transform does not reveal significant dif-
ferences along gender in onset phase (z = −0.365, p = 0.715)
and offset phase (z = −0.288, p = 0.773).

2) Ethnicity: Ballistic timing is consistent across differ-
ences in ethnicity (see table-VI)– both Caucasians and non-
Caucasians have a significantly (p < 0.001) positive relation
between amplitude and velocity. No significant differences
were found between Caucasians and non-Caucasians for onset
phase (z = 0.693, p = 0.488) and offset phase (z =
0.375, p = 0.707).

3) Context: The variance captured by context of smile ori-
gin for the ballistic timing is shown as table-IV. Anger smiles
have the highest variance followed by embarrassment, fear,
and amusement. Though we notice differences in the shared
variance between contexts, we did not find any significant
differences using the Fisher‘s transform. This trend is observed
in both onset phase and offset phase. In Belfast, the shared
variance is higher in amused smiles than fear smiles. This trend
is observed in both onset phase and offset phase. However, the
differences are not significant.

4) Duchenne: Presence of the Duchenne marker does not
affect the shared variance (table-VII) captured by ballistic



timing when compared to non-Duchenne smiles. Duchenne
smiles have higher shared variance than non-Duchenne smiles.
However, the differences are not significant in onset phase
(z = 1.296, p = 0.195) and offset phase (z = 0.753, p =
0.451).

V. DISCUSSION

Smiles are among the most common expressions, are highly
variable in morphology and dynamics, and serve varied func-
tions [3]–[5], [7], [9], [10]. As but one example, smiles
that communicate amusement have longer duration, larger
amplitude, and greater velocity than ones that are perceived as
polite [4]. Despite a spectrum of such differences in smiles,
our findings suggest that ballistic timing is common to all
of them. Originally observed by Schmidt et al. [17], ballistic
timing refers to the existence of a strong correlation between
amplitude and maximum velocity of their onset and offset
phases.

We evaluated the robustness of ballistic timing to a wide
range of factors in two relatively large and diverse databases.
Contexts included emotion inductions for anger, fear, em-
barrassment and amusement. Participants included men and
women, Caucasians and non-Caucasians, and people from
developed (US and Ireland) and developing (Peru) countries.
Smiles with and without the Duchenne marker were included.
We found strong evidence of ballistic timing that was robust to
all potential sources of variation considered. In light of ubiq-
uitous evidence for ballistic timing in non-human vertebrates
[13]–[15], ballistic timing of smile onsets and offsets may
represent a human universal. To test this hypothesis, further
research would be needed.

The implications of our work can be observed in the fields of
social robotics and intelligent virtual agents. Social robots and
virtual agents can now be found helping children learn [32],
assisting the elderly [33], promoting mental health discussion
[34] and as multimodal conversational agents [35]. Mimicking
human behavior by such agents is a key component to their
success as it leads to increased human affinity [36]. However,
insufficient emulation of human behavior by such agents could
result in decreased human affinity towards them. The uncanny
valley [36] would suggest that as we increase the degree of
emulation, the affinity towards the agent decreases beyond
certain level and then starts to increase. Though it is possible
to design agents with reasonably safe level of affinity by
pursuing a non-human design, we believe that in order to
achieve the maximum possible affinity one needs to understand
and incorporate fundamental mechanisms like the ballistic
timing. The synthesis of gestures and facial expressions has
become increasingly data-driven [37]–[39] because of neural
networks. However, it is unclear if such data-driven approaches
capture the invariant stereotypical mechanisms such as the
ballistic timing in smiles. We believe that emulating such
mechanisms would contribute to overcoming the uncanny
valley and increase the humanness and user experience of
social robots and virtual agents.

VI. CONCLUSIONS

Our study expands on earlier works where differences in
smile expressions were studied largely in terms of limited
contexts (solitary vs. social and spontaneous vs. posed) and
limited variation in participants. We explore ballistic tim-
ing further in two large-scale publicly-available datasets. We
consider the amplitude-velocity relation among smile onsets
and offsets in relation to context, presence or absence of the
Duchenne marker, gender, ethnicity, and country. We found
strong evidence for ballistic timing robust to all these potential
sources of variation. Our findings have implications for intelli-
gent virtual agents and social robotics. In both domains, failure
to implement ballistic timing could contribute to uncanny
effects. By implementing ballistic timing of onsets and offsets
of smiles and other displays as well, risk of uncanny valley
effects might be reduced. Further, attention to ballistic timing
could help identify deep-fakes to prevent harmful/unlawful
impersonations of individuals.

ETHICAL IMPACT STATEMENT

Our primary goal was to evaluate ballistic timing in smiles
and its robustness to context, presence of the Duchenne
marker, and individual differences in participants (gender,
ethnicity, and country). Data were from two relatively large
publicly-available data sources. All participants gave informed
consent to use of their data by qualified investigators. Our
findings if used in ethical manner could contribute to realistic
animations and visual synthesis of smiles in virtual humans
and social robots. A potential risk is that deepfakes could be
made more realistic by making use of our findings.
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