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Abstract— Depression is the most common psychological
disorder, a leading cause of disability world-wide, and a major
contributor to inter-generational transmission of psychopathol-
ogy within families. To contribute to our understanding of
depression within families and to inform modality selection
and feature reduction, it is critical to identify interpretable
features in developmentally appropriate contexts. Mothers with
and without depression were studied. Depression was defined
as history of treatment for depression and elevations in current
or recent symptoms. We explored two multimodal feature
selection strategies in dyadic interaction tasks of mothers with
their adolescent children for depression detection. Modalities
included face and head dynamics, facial action units, speech-
related behavior, and verbal features. The initial feature space
was vast and inter-correlated (collinear). To reduce dimension-
ality and gain insight into the relative contribution of each
modality and feature, we explored feature selection strategies
using Variance Inflation Factor (VIF) and Shapley values. On
an average collinearity correction through VIF resulted in about
4 times feature reduction across unimodal and multimodal
features. Collinearity correction was also found to be an optimal
intermediate step prior to Shapley analysis. Shapley feature
selection following VIF yielded best performance. The top 15
features obtained through Shapley achieved 78% accuracy.
The most informative features came from all four modalities
sampled, which supports the importance of multimodal feature
selection.

I. INTRODUCTION

Approximately one in seven adolescents between 10 and
19 years of age experience a mental disorder [26]. Depres-
sion is especially common. Past studies[3], [27] have found
that the well-being of parents plays an important role in the
well-being of their children. Children with parents who have
recurrent episodes of depression are at significantly increased
risk for depression and other disorders. Findings such as
these suggest that family environment profoundly influences
adolescent mental well-being.

Research reported in this publication was supported in part by the US
National Institutes of Health under Award Number MH096951. The content
is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

Computational approaches to depression assessment have
been a popular problem in the affective computing commu-
nity [7], [36], [35]. Using objective measures of behavior
to detect depression, they seek to overcome some of the
limitations of self-report based ratings [5]. Most of this work
has focused on a small number of constrained settings, such
as clinical interviews [14], [15], interactions with a virtual
agent [17], and reading aloud [36], [35]. Ours may be the first
computational study to consider the influence of depression
between family members, specifically, mothers and their ado-
lescent offspring. To contribute to developmental behavioral
and clinical science, we seek to understand how depression
is communicated within families. Depression was defined as
history of treatment for depression together with current or
recent symptoms.

Due to the sheer number of features involved in compu-
tational approaches to depression detection and the limited
data typically available, models are at risk for overfitting.
To address this problem, dimensionality reduction methods
such as Principal Component Analysis (PCA) have been
used. But PCA often leads to difficulty in interpreting the
contribution of features. Dropping highly correlated features
is another alternative. Because that solution is limited to
linear pairwise relations, collinearity among multiple features
fails to be considered. To overcome these limitations, we use
Variance Inflation Factor (VIF), a feature-centric approach to
determine collinearity.

Features were multimodal and included a wider range than
in most previous studies. They encompassed head orientation
and dynamics, facial action units and gaze, speech behavior,
and speech. To afford interpretability and because the number
of participants was modest (n = 152), a priori features rather
than learned ones were used.

Given the very large number of multimodal features,
collinearity within and between modalities was common.
We pursued two approaches in combination for collinearity
correction and feature reduction: Variance Inflation Factor
(VIF) and Shapley analysis[33], [21]. Together, they achieved
interpretability and improvement in performance. We sum-978-8-3503-4544-5/23/$31.00 ©2023 IEEE



marize our contributions as follows:
1) Investigate the influence of depression in social inter-

actions between mothers and their adolescent offspring.
Previous studies of social interaction in depression are
limited to solitary tasks or structured interviews between
unrelated individuals.

2) Depression was defined as history of treatment for
depression together with elevations in current or recent
symptoms, which is relevant to developmental outcomes
in children.

3) Unlike most previous works (see related works), we use
both verbal and a holistic set of non-verbal behavior for
depression detection and evaluate how they influence the
prediction.

4) Explore the efficacy of a variety of unimodal and
multimodal features in depression detection.

5) Demonstrate that many features for depression detection
are highly collinear and that by reducing collinearity
through VIF followed by Shapley analysis substantial
improvement in detection accuracy can be achieved.

II. RELATED WORKS

Previous work in depression detection has focused on
clinical interviews and other constrained tasks (e.g., reading
digits). In audio-video recordings of clinical interviews,
Dibekliouglu et al.[9] used face and head dynamics and
prosody features for depression detection. They performed
dimensionality reduction of landmarks and head pose (roll,
pitch and yaw) parameters using autoencoders. These com-
pact features were then used to calculate displacement, ve-
locity and acceleration of landmarks and head pose changes.
Frame-level dynamic features were then consolidated using
improved Fisher-vector representation to obtain video-level
features. After feature selection using the Min-Redundancy
Max-Relevance algorithm, best performing model achieved
a mean accuracy of 78% across different levels of depression
severity.

The utility of action units towards depression prediction
was demonstrated by Girard et al.[14], [15]. They performed
comparisons of action unit base rates among patients treated
for depression. Manual FACS coding was done for a small
portion of the data which was then used as ground truth to
train a classifier to obtain AU predictions for entire data.
It was found that among depressed subjects, the action
units corresponding to affiliation (AU12 and AU15) occurred
seldom while those associated with isolation (AU10 and
AU14) were found more common.

Facial landmarks, spectrograms of audio and word em-
beddings from transcription were used in Haque et al.[18]
to extract sentence-level multimodal embeddings. Unlike
studies where video-level features were consolidated through
clustering based approaches or summary statistics, they per-
formed sentence-level depression prediction. The sentence-
level multimodal embeddings were used to predict (both
classification and regression) for depression diagnosis and
depression severity as measured using a self-reported PHQ-
8 questionnaire.

Morales et al.[22] proposed a syntax-informed fusion
for depression prediction using audio, syntax of spoken
words and action units. Instead of using multimodal features
as independent features, they extracted syntax-conditioned
features such as audio features in the presence of verb
usage. It was found that syntax-informed features improve
performance and highlight novel features that were thought
to be less informative in an early fusion setting.

In works related to hybrid classifiers, Yang et al.[37]
used spoken portions of subject-agent interaction to predict
depression. Unlike most works mentioned, where depression
was solely evaluated from verbal and/or non-verbal cues, this
work used the self-report on personality, mood and other
physical and mental conditions to train a text based SVM
prediction model. They also employed a piecewise training
strategy of prediction models involved. They trained a CNN
model for audio and visual features independently for PHQ-
8 score prediction followed by a fully connected model and
then fused the resultant score prediction with the predicted
physical and mental conditions of the subject for depression
diagnosis.

Generalization of features across datasets was recently
explored by Alghowinem et al. [2]. They explored various
feature selection methods using an SVM classifier to study
how summary statistics of multimodal features generalize
across three different datasets for depression prediction.
Using features capturing various non-verbal cues (head dy-
namics and gaze), speech behavior and prosody, this work
highlighted the challenges in feature generalization due to
differences in the nature of datasets. For example, features
from BlackDog (clinical interview) and AVEC (interaction
with a computer) datasets found generalization on the Pitt
dataset (clinical interview) challenging. They found that a
subset of features from gaze and prosody generalized across
datasets.

These studies vary in how they defined depression. Some
used diagnostic criteria and others used symptom severity
as ascertained by self report measures or clinical interviews.
We defined depression as history of prior treatment together
with current or recent symptoms. From a developmental
perspective, mothers’ history of depression is what matters
in influencing child outcomes [20]. As noted above, previous
studies were limited to depression in solitary or structured
social contexts like interview between unrelated persons.
Our work focuses on related individuals, specifically family
members in social interactions.

III. DATASET AND METHODS

In this section we describe participants, observational
procedures, and feature extraction.

A. Participants

Participants were 180 low-income women and their ado-
lescent children, aged 11–14. Two groups of women were
recruited: a depressed group, selected for a history of
treatment for depression together with elevated depressive
symptoms at the time of recruitment (PHQ-9 cut-off score



> 10; mean = 12.32, SD = 5.84) and a non-depressed group,
selected for no history of treatment for depression, no or low
levels of current depressive symptomatology (PHQ-9 cut-off
score < 8; mean = 2.57, SD = 2.70), and no current (i.e.,
past month) mental health treatment for any mental health
disorder. Exclusion criteria for participants of both groups
included psychosis, other illness, or cognitive impairment
that would interfere with participation (e.g., substance use
that would render abstinence for the assessment difficult
to tolerate). The Structured Clinical Interview non-patient
version[12] was administered to confirm Depressed vs. Non-
Depressed status.

Of the 180 participants, 152 participated in a lab-based
dyadic interaction task that is the focus of this study. The
depressed group consisted of 75 dyads (i.e., mother-child
pairs). The remaining 77 dyads formed the non-depressed
group. For further details on various assessment procedures,
please see [23], [24]. Metadata and de-identified multimodal
features will be made available to qualified researchers
pending IRB approval.

B. Observational procedures

The mother-adolescent dyads from both groups partici-
pated in a Problem Solving Interaction task (PSI). The topic
of conversation in the PSI was chosen to induce conflict
between mother and child as per the Issues Checklist[31].
Audio was recorded at 16kHz with a dedicated microphone
for each subject. Video was recorded at 30fps and 720p
resolution using a dedicated camera for mother and child.
Each interaction was designed to last 15 minutes. A 10-
minute portion was manually segmented and transcribed
for each interaction. For brevity, we use duration of the
interaction when we refer to duration of the transcribed
portion of the interaction throughout this work.

C. Features for depression prediction

Informed by prior research as reviewed above in Related
Works, we extracted features for detection of depression.
To enable interpretation of features, we use the summary
statistics of various features discussed below.

1) Face and Head Dynamics (FHD): The orientation of
mother‘s head, and facial expressions were captured through
the angular orientation (roll, pitch and yaw) of head and
facial landmarks extracted using AFAR toolbox[11], [25].
These were then used to define the dynamics of head and
landmarks as detailed below.

The head angular orientation from AFAR was used to
define head dynamics consisting of velocity and accelera-
tion. We use the definitions from Dibekliouglu et al.[9] to
calculate the first derivative (difference between successive
frames) of displacement as velocity and second derivative of
displacement as acceleration. Dynamics along roll, pitch and
yaw were extracted independently.

The angular orientation was used to extend features to
include head oriented left/right, up/down, clockwise (CW)
/ anticlockwise (ACW) similar to Alghowinem et al.[2].
We define head oriented left/right as the subject facing the

camera beyond one standard deviation (std) about the mean
in yaw direction. Similarly for up/down we use pitch and for
CW/ACW we use roll. These were then used to define head
aversion. We quantize the head orientations using duration
of head oriented up/down (similarly left/right, CW/ACW),
mean duration of head aversion, rate of head orientation
change.

The mean landmark dynamics (velocity and acceleration)
were calculated using the 49 facial landmarks. In addition
to these dynamics, for each eye, the distance between
eyelids[4], eye-closure duration and blinking rate were cal-
culated. We define blinking as an instance where the vertical
displacement between eyelids is less than the mean minus
one std. Eye-closure duration is defined as the duration
for which the vertical displacement between eyelids is less
than the mean minus one std. Blinking rate is defined as
the number of instances of blinking per duration of the
interaction.

The mean and standard deviation used to define thresholds
were calculated using the entire dataset. All face and head
orientation based dynamics were represented as the mean,
minimum, maximum, standard deviation, variance, inter-
quartile range of features described above. All duration and
count based features were normalized with the duration of the
interaction. This resulted in 143 features capturing summary
statistics of various attributes of head and face.

2) Action Units (AU): The action unit predictions from
the AU detection module of AFAR were used to extract the
following features:

(a) Intensity for AUs 6, 10, 12, 14, 6+12 (positive affect or
PA)

(b) Likelihood and duration of occurrence for AUs 1, 2, 4,
7, 15, 17, 23, 24

The intensity predictions are ordinal on a 0 to 5 scale
while the occurrence predictions are probabilities indicating
the likelihood of presence of a given AU per frame. Positive
affect (PA) was defined as an average of intensities of AUs
6 and 12. To quantify duration, we threshold probabilities at
0.5 to define AU presence. Duration is defined as length of
continuous AU presence normalized by the duration of the
interaction. We did not use the duration for AUs 6, 10, 12,
14, 6+12 as including them with the rest of the features
led to extreme multicollinearity (mean VIF>>100 across
AU features). Note that AFAR does not provide intensity
predictions for AUs 1, 2, 4, 7, 15, 17, 23 and 24.

The intensity, likelihood and duration features were con-
solidated using mean, minimum, maximum, standard devi-
ation, variance, inter-quartile range. For actions units with
intensity and occurrence predictions, we rely on intensity
over occurrence to avoid inconsistencies between the same.
126 features summarizing intensity and occurrence dimen-
sions of various facial muscle movements were then used in
this study.

3) Speech Behavior (SB): The SB features were extracted
using manually segmented utterances from the recorded au-
dio. An utterance was defined as continuous speech activity



with no more than 300ms of silence. The utterances seg-
mented from audio were then used to identify inter-individual
pauses. An inter-individual pause was defined as the time
elapsed between end of the current utterance and beginning
of the next utterance. These utterances were characterised by
a speaker change.

SB features include duration of utterance by mother and
child, duration of overlapping speech, and duration of inter-
individual pause. All features were normalized for the dura-
tion of the interaction and quantified as sum (total duration),
mean, minimum, maximum, std, variance and inter-quartile
range. In addition to these features, we also calculated the
rate of overlapping speech as the number of instances of
speech overlap per duration of interaction. The resultant
29 features capturing the dialogue dynamics of the dyadic
interaction were also used for depression prediction.

4) Verbal features (LIWC): The LIWC[30], [34] frame-
work was used to extract 92 features from the verbal content
of each interaction. On average, about 93% of words used
in each interaction were present in the LIWC framework
and analyzed. We drop the coverage (referred to as “Dic”
in LIWC) variable and normalize (with duration of the
interaction) word-count variable for our analysis. We only
use the verbal content from mothers to extract the LIWC
features.

The resulting 390 multimodal features across face and
head dynamics (143), action units (126), speech behavior
(29) and verbal features (92) of the mothers were used for
depression prediction. Using the features corresponding to
the children is of interest to future work.

D. Multicollinearity and Variance Inflation Factor

Multicollinearity (or collinearity) can be described as a
linear relationship between variables. In regression analy-
sis, using collinear features can lead to overfitting where
model could fit the predictor variable with a high explained
variance(R2) despite no significant effect from any of the
features[28] as a result of high variance in the parameter
estimates. Variance Inflation Factor (VIF) can be used to
eliminate highly collinear features while preserving the nec-
essary features in their original form without the need for
predictor information.

Variance Inflation Factor: Variance Inflation Factor (VIF)
explains the contribution of each feature based on regression
between features. The unexplained variance of a regression
model for a given feature using the rest of the features as in-
dependent variables indicates how much “new information”
the feature contains. Higher the unexplained variance of a
feature, less collinear it is against the rest of the features. It
helps in reducing feature redundancy by preserving features
whose VIF value falls under the threshold. VIF based feature
reduction has been used in literature before including [6],
[13]. In this work, we focus on reducing the intra-modal
collinearity for depression detection.

V IFi =
1

1−R2
i

where R2
i is the explained variance of a regression model

using the ith feature as the dependent variable and the rest
of the features as independent variables.

E. Shapley analysis

Shapley values[33] were introduced in game-theory to de-
termine the contribution of individual players in cooperative
games. More recently, it has been of interest to interest to
the machine learning and explainable AI communities[8].
Given the ith data instance with m features denoted by Xi

m,
Shapley value for the jth feature (equation-1) is defined as
the weighted average of differences in predictions in the
presence of the jth feature and when it is marginalized.
In practise, marginalization is achieved by using predic-
tions from different subsets of features. Because of the
intense (runtime increases exponentially with number of
features) marginalization process, calculating Shapley value
is computionally expensive. However, approximate Shapley
values can be calculated using the SHAP (SHapley Additive
exPlanations) framework[21]. These are referred to as the
SHAP value.

ϕ j(v) = ∑
S⊆{1,2,...,m}\{ j}

|S|! (m−|S|−1)!
m!

(v(S∪{ j})− v(S))

(1)
where ϕ j is the Shapley value for the jth feature, v is the

prediction model, m is the total number of features and S is
a subset of features.

Local Interpretable Model-agnostic Explanations[32]
(LIME) have been popular in explainable AI community to
interpret model decisions. They approximate a given model
using a linear model so that predictions from both models
match (local accuracy) at least at the inputs. While LIME
guarantees local accuracy, the SHAP framework improves
to guarantee robustness to missing features (missing features
have no impact on the contribution of the feature of interest)
and consistency of features. This is achieved by kernelizing
the traditional LIME model.

In this work, the SHAP values were used to rank the
features in terms of their relative contribution to the task.
Kernelized LIME was used to determine the SHAP values
of features. We limit ourselves to Shapley analysis on mul-
timodal features.

F. Classification setup

To enable interpretable features, following Alghowinem
et al. [2] we use an SVM classifier to distinguish between
mothers in the depressed and non-depressed groups in the
feature space. All modalities except the LIWC were Z-
score normalized, since they were designed to be implicitly
normalized (each feature can take a value from 0 to 100%).
Despite the recent success of deep learning models[19] and



TABLE I
UNIMODAL AND MULTIMODAL PERFORMANCE WITH NO FEATURE SELECTION

# features ACC PA NA
Action Units 126 0.618 0.592 0.642

Face & Head Dynamics 143 0.594 0.384 0.702
Speech Behavior 29 0.534 0.553 0.510

Verbal 92 0.631 0.611 0.650
All modalities 390 0.671 0.662 0.679

their ability to learn task-relevant features, we refrain from
using them over concerns of overfitting on the dataset.
Additionally, we wish to inform developmental science by
identifying theory-relevant features and an understanding of
their relative contributions.

We explored SVM hyperparameters with linear and poly-
nomial kernels and C value in the range of 10−5 to 103

on a log-scale. The best hyperparameters for each experi-
ment were determined with a gridsearch and five-fold cross-
validation (CV) through gridsearchcv[29]. The best hyperpa-
rameters were used for Leave-One Subject-Out (LOO) cross-
validation to report accuracy (ACC), positive agreement
(PA) and negative agreement (NA) for all our experiments.
Definitions of PA and NA can be found in Girard et al.[16].

IV. RESULTS

In this section we present the results using unimodal
and multimodal features as described in section-III. All
modalities refers to early fusion of all unimodal features.

A. Depression Prediction
We evaluated how the unimodal features and multimodal

all modalities perform at depression prediction without fea-
ture reduction. Features from different modalities described
in section-III were used and the results are summarized as
table-I. Among all unimodal features, the verbal features
were the best performing modality. This was followed by the
action units and face and head dynamics. Speech behavior
modality contribution to the performance was only slightly
better than a chance classifier. The early fusion of all
modalities used outperformed the best unimodal features by
4% with an accuracy of 0.671.

B. Collinearity corrected features for depression prediction
a) VIF threshold: The choice of VIF threshold for

collinearity correction was determined using a task-centric
approach. We used a large range (0 to 100) for VIF threshold
in order to be conservative with the number of features
rejected in the first-step. We performed a LOO CV to
determine the optimal VIF threshold for each configuration.
For all modalities condition, we first performed collinearity
correction for unimodal features and then used the resultant
features with an early fusion strategy.

The thresholds for VIF determined using cross-validation
(figure-1) reveal that the optimal collinearity among modali-
ties differ. A low optimal threshold (VIF=20) for action unit
features suggest that the corresponding 17 action unit fea-
tures contain sufficient task-relevant information and further
increases in collinearity led to a decrease in the performance.
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Fig. 1. Cross-validation accuracy of unimodal features at different levels of
VIF threshold. The dashed vertical lines correspond to the best VIF threshold
used for collinearity correction for each modality and experiments in table-
II.

The face and head dynamics at VIF=10 (figure-1) had only
2 features, while they were less collinear, their efficacy at
distinguishing depressed and non-depressed groups was poor.
At optimal VIF=60 threshold, 29 features qualified suggest-
ing that increasing collinearity could offer improvement in
performance. On further increase at VIF=80, performance
drops to 0.586. This trend shows that there is a collinearity-
performance trade-off that could be explored. Verbal features
had the highest VIF threshold. This could be because of the
hierarchical nature of the features in the LIWC features (for
example, the negative emotion feature overlaps with anxiety,
anger and sadness but has some unique features). A higher
VIF threshold allows for such collinear and task-relevant
features to be used for prediction. The speech behavior
features were robust to the changes in the VIF threshold
though the optimal threshold was found to be 90.

Results from the last experiment presented the utility of
different modalities in their original configuration of features.
In this experiment we avoid features that were collinear.
Table-II shows results after features from each modality with
VIF exceeding the corresponding threshold were dropped.
The unimodal performance improved across all modalities
(between tables–I and II). This was particularly noticeable
in speech behavior features where accuracy increased from
0.534 to 0.593. The performance of all modalities increased
after accounting for collinearity, accuracy increased from
0.671 to 0.717.

In addition to performance improvements, feature reduc-
tion through collinearity correction were also observed. Com-
paring tables-I and II, we notice 1.5-7 times fewer features
using VIF across modalities. Across all modalities, nearly a
4 times feature reduction was observed.



TABLE II
COLLINEARITY CORRECTED PERFORMANCE. ALL MODALITIES IS THE EARLY FUSION OF VIF REDUCED UNIMODAL FEATURES

VIF # features ACC PA NA
Action Units 20 17 0.644 0.620 0.667

Face & Head Dynamics 60 29 0.625 0.612 0.637
Speech Behavior 90 19 0.593 0.613 0.569

Verbal 100 40 0.664 0.658 0.671
All modalities N/A 105 0.717 0.715 0.719

C. Shapley analysis

In Shapley analysis, we identified the top contributing
features based on their SHAP values to further reduce the
features used. We then performed classification using the top-
k features and determined the subset of features that perform
the best.

Avoiding collinearity demonstrated performance improve-
ments and feature reduction in both unimodal and mul-
timodal configurations, however, the necessity of VIF as
an intermediate step against Shapley analysis with original
features without collinearity correction was not established.
To address this concern, we performed Shapley analysis on
two configurations–the collinearity corrected early fusion of
modalities (all modalities in table-II) and the early fusion of
all modalities in their original configuration (all modalities
in table-I) independently.

For each configuration, SHAP values were used to de-
termine the feature contributions to the respective models.
Features were then ranked based on their mean SHAP
values–higher the value, more important the feature. To
determine the best k, LOO CV was performed. Figure-3
shows the top-20 features for the collinearity corrected all
modalities classifier. The performance trend against k for
each configuration is shown as figure-2. As the number of
features increase, the performance decreases after reaching
the optimum, despite the feature relevance (i.e. ranked based
on their relative contribution to the prediction). For Shapley
on all modalities (no collinearity correction), much lower
performance was observed initially. Adding more relevant
features increased the performance with best performance at
k=85. Both configurations achieved comparable best perfor-
mance, the collinearity corrected Shapley approach achieved
an accuracy of 0.777 with k=15 features while the Shapley
on original features achieved 0.782 accuracy with k=85
features. We observe that collinearity correction results in
a large reduction in features (nearly 6 times fewer features)
over using Shapley analysis over collinear features.

TABLE III
COMPARISON OF THE BEST PERFORMING SHAPLEY MODELS

All modalities All modalities with
collinearity correction

Features 85 15
ACC 0.782 0.777
PA 0.778 0.779
NA 0.787 0.773
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Fig. 2. Cross-validation performance of top-k features derived from
Shapley analysis. The solid lines correspond to collinearity corrected all
modalities and the dashed lines correspond to all modalities without
collinearity correction.

V. DISCUSSION

Among unimodal features the order (highest to lowest)
of performance was verbal, action units, face and head
dynamics and speech behavior. Face and head dynamics were
better at identifying non-depressed class (high NA and low
PA) over the depressed class. A similar trend was observed
with action units and verbal features but the differences
were smaller. Unlike other unimodal features, the speech
behavior was better at depressed class prediction than the
non-depressed class.

Early fusion of all modalities led to improvement in
performance, and optimal collinearity threshold led to a
large drop in the number of features across modalities. On
an average about four times reduction in the number of
features could be observed. The face and head dynamics
based features have seen a five times reduction in the number
of features. The speech behavior features were the least
effected with a 1.5 times reduction and the largest improve-
ment (6%) in performance across all metrics. The unimodal
face and head dynamics evidenced a large improvement
in PA (0.384 to 0.612) through collinearity correction and
thus an increased sensitivity towards the depressed class.
It also helped in reducing 143 features to 29 features.
The biggest unimodal feature reduction was observed with
action units where 7.9 times fewer features led to accuracy
improvement from 0.618 to 0.644. Post feature reduction,
using early fusion of modalities with 105 features led to
0.717 accuracy against its original configuration of 390
features with accuracy 0.671, nearly a four time reduction
in the number of features. This demonstrates the utility of
collinearity correction for prediction performance through



Fig. 3. Distribution of SHAP values for the top-15 collinearity corrected features as violin plots. The features along the y-axis are color coded by modality:
LIWC, action units (AU), speech behavior (SB), and face and head dynamics (FHD). The x-axis denotes each feature’s contribution, which may range
from strongly negative (blue) to strongly positive (red).

TABLE IV
TOP-15 SHAPLEY RANKED FEATURES FROM ALL MODALITIES AFTER COLLINEARITY CORRECTION

Action Units Face and Head Dynamics Speech Behavior Verbal
AU12 intensity Yaw velocity Mother talk duration Analytic

PA (AU6+12) intensity Yaw displacement Negations (negate)
AU6 intensity Yaw acceleration Past events (focuspast)

Roll acceleration Comparisons (compare)
Roll velocity Informal language/humor (netspeak)

Quantitative words (numbers)

feature reduction. Using the top-15 features from Shapley
analysis on collinearity corrected features, we achieved 0.777
accuracy against 0.782 with 85 features through Shapley
analysis on features without collinearity correction.

The top-15 features obtained through Shapley analysis
on collinearity corrected early fusion of modalities can be
found in table-IV. Non-verbal features (action units together
with face and head dynamics) constituted more than 50%
of the top-15 features. Given that the unimodal verbal
features were the best performing modality (both with and
without collinearity correction), equivalently they were the
most (6 out 15 features) contributing modality towards the
best performing multimodal model. Verbal features captured
concepts such as analytic capabilities, focus on past events,
negations, comparisons, humor and quantitative aspects of
the spoken content. The analytic capabilities of depressed
mothers were found to be lower than the non-depressed
mothers. However, indicators such as usage of negations (no,
not, never) and comparisons (better, best, after) were higher.
Lower usage of informal language and humor (yup, haha,
boo) in addition to referencing past events and agreements
were found in the interactions between depressed moth-
ers and their children. Focus on past was found to lower
in depressed mothers over non-depressed mothers, similar
observations were made in patient-therapist interactions in
Dirkse et al.[10] where over the course of therapy for current
depression a significant increased usage of references to past
were encountered in depressed patients.

Base rate differences among action units were observed
in previous studies for understanding current depression[14],

[15], our analysis revealed differences in intensity level. The
maximum intensity of AUs 12, positive affect, 6 and 10
(outside the 15 features) were found to lower in depressed
mothers. This shows that the smiles (including the Duchenne
smiles) among depressed mothers were of less intensity
when compared to smiles in non-depressed mothers and
intensity of action units should be investigated in addition to
their occurrence. Only one of the top-15 features correspond
to speech behavior. The total duration of mother‘s spoken
activity was lower in depressed group than the non-depressed
groups suggesting a reluctance among mothers to participant
in a problem-solving task involving their children.

Some of our findings in families converge with previous
findings in non-family contexts, such as interviews with
a clinician or an avatar. In both the family interaction
context and the interview context, head dynamics varied
between depressed and non-depressed participants. Head
dynamics in particular were similar in both contexts [2].
These included yaw displacement and roll dynamics (ve-
locity and acceleration). This convergence is all the more
striking given the differences between studies not only in
context (family interaction vs. clinical interviews) but also
in feature selection methods. We used VIF and Shapley; [2]
used an aggregation of feature selection approaches. Another
convergence was for speech features. In particular, speech
of depressed participants was more likely to focus on past
events [10], which is consistent with clinical observations of
rumination in depression. With respect to facial expression,
smile occurrence and intensity varied similarly in both our
family interaction data and in clinical interviews. [15] found



that smiles were less frequent or intense in depression. These
findings suggest that unimodal and multimodal features of
depression are robust to differences in context. Further work
will be needed to test this hypothesis.

VI. CONCLUSION

Using a wide range of both verbal and nonverbal features,
we achieved state of the art discrimination between mothers
with and without depression. Our findings converge with
ones previous in suggesting the importance of multimodal
features and feature selection.

Reducing features in a principled way optimized per-
formance. The findings extend previous ones in multiple
respects. Depression detection was within families during
a problem solving task (mothers and their adolescent off-
spring) rather than in clinical interviews; VIF and Shap-
ley approaches to feature selection rather than alternative
approaches were used; relative contribution of nonverbal
and verbal modalities was revealed. Experiments explored
relative contributions of unimodal and multimodal features.
Through convergence with previous research, we found that
multiple features are robust to varied differences in context
and relationships.

Two limitations may be noted. One is the lack of prosody
based features. Prosody has been shown to be an important
modality offering depression related information as physical
manifestation in speech production process and the speech
outcome[1], [2], [7], [38]. Whether inclusion of prosody
based features among the multimodal ones we considered
would boost performance is an empirical question. It is
possible that prosody might supplant some of the predictive
power of other features rather than result in net boost.
That is a question for further research. Another limitation is
that only mother specific features were used for prediction.
Given the evidence from psychology literature[24], [27] on
differences in child behavior pertinent to parent depression,
the directions for future work also includes using the child
features both in conjunction with the mother features and
separately to evaluate depression detection.
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