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ABSTRACT
Depression strongly impacts parents’ behavior. Does parents’ de-
pression strongly affect the behavior of their children as well? To
investigate this question, we compared dyadic interactions between
73 depressed and 75 non-depressed mothers and their adolescent
child. Families were of low income and 84% were white. Child
behavior was measured from audio-video recordings using man-
ual annotation of verbal and nonverbal behavior by expert coders
and by multimodal computational measures of facial expression,
face and head dynamics, prosody, speech behavior, and linguis-
tics. For both sets of measures, we used Support Vector Machines.
For computational measures, we investigated the relative contribu-
tion of single versus multiple modalities using a novel approach to
SHapley Additive exPlanations (SHAP). Computational measures
outperformed manual ratings by human experts. Among individ-
ual computational measures, prosody was the most informative.
SHAP reduction resulted in a four-fold decrease in the number
of features and highest performance (77% accuracy; positive and
negative agreements at 75% and 76%, respectively). These findings
suggest that maternal depression strongly impacts the behavior of
adolescent children; differences are most revealed in prosody; mul-
timodal features together with SHAP reduction are most powerful.

CCS CONCEPTS
• Applied computing→ Psychology; • Human-centered com-
puting; • Computing methodologies→ Feature selection;
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1 INTRODUCTION
Depression strongly influences the interpersonal behavior of af-
fected individuals. Some examples of altered behavior include atten-
uated head motion and facial movements [19]. Depressed individu-
als are perceived to be sadder, more negative, and more uncomfort-
able [7]. This altered interpersonal behavior may have significant
consequences for families with children.

About 10-15% of mothers with minor children are affected by
depression each year [10]. Developmental studies [24] find that
mothers with depression express increased negative affect with
their children. Such differences in parenting influence children’s
development [15]. Effects include impaired social outcomes and
cognitive functioning and increased occurrence of internalizing
and externalizing problems (such as depression and social anxiety).
Little is known, however, about how depression in mothers influ-
ences the proximal behavior of their children. In an effort to reveal
possible transmission of depression to offspring, we investigated
the discernible characteristics of children of depressed mothers as
compared to their counterparts.

Much of what we know from developmental studies of mother-
child interactions is based on observer ratings of behavior. One
example of an observational coding system to study behavior in
family environments is the Living in Family Environments (LIFE)
system [17]. LIFE codes distinguish between positive, aggressive,
dysphoric and neutral behavior. Such coding approaches provide
high-level, subjective descriptors but are unable to capture objective
behavioral differences within and between behavioral modalities.

To capture low-level behavior, computational measures are need-
ed. These measures been actively used for depression detection and
severity prediction in clinical interviews and non-family contexts
but not within families. We use computational measures of behavior
to understand differences in child behavior related to maternal de-
pression. We evaluate the hypothesis that children of depressed and
non-depressed mothers differ strongly between and within modal-
ities of behavior. We compare unimodal behavior to multimodal
behavior in predicting maternal depression from child behavior,
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early vs. late fusion strategies, and introduce a novel feature selec-
tion strategy based on the SHapley Additive exPlanation framework
(SHAP)[20]. In addition, we evaluate the efficacy of computational
measures by comparing them with manually annotated observer
ratings of behavior.

SHapley Additive exPlanations (SHAP) [20] of features has been
used to understand how specific features affect prediction models
[3]. SHAP-based feature selection approaches typically entail inclu-
sion of additional random or shadow features [21, 32]. We propose
an approach to SHAP ranking that avoids the need to introduce
shadow or random features and significantly reduces the number
of features. These innovations help in both being conservative
with the number of features as well as incorporating explainability
into the solution. The novel contributions of this work include the
following:

(1) Detecting children of mothers with a history of depression
from multimodal computational measures of behavior.

(2) Comparing computational measures and manual annotation
by expert human raters.

(3) Using SHapley Additive exPlanations (SHAP) for feature
selection without introducing masked or random features.

(4) Identifying the relative contribution of modalities and fea-
tures within modalities that vary between children of de-
pressed and non-depressed mothers.

2 RELATEDWORK
Previous work has focused on occurrence and to lesser extent his-
tory of depression in adults. To the best of our knowledge, our work
is the first to address influence of depression using computational
measures in children of parents with versus without depression.
For that reason, related works necessarily are limited to those that
predict current or history of depression in adults rather than in
children of affected families.

Generalization of features across datasets for current depression
prediction was recently explored by Alghowinem et al. [2]. They
explored various feature selection methods using an SVM classifier
to study how summary statistics of multimodal features generalize
across datasets in three different countries. Using features capturing
various non-verbal cues (head dynamics and gaze), speech behavior
and prosody, this work highlighted the challenges in feature gener-
alization due to differences in the nature of datasets. For example,
features from BlackDog (patient-therapist interview) and AVEC
(interaction with a computer) datasets found generalization on the
Pitt dataset (patient-therapist interview) challenging. They found
that a subset of features from gaze and prosody generalized across
datasets.

Alternatives to patient-therapist interactions for depression pre-
diction have also been explored. One such example is the audio-
visual data collected through a virtual agent as interviewer in the
DAIC-WoZ dataset [16]. More recently, Ray et al. [28] used audio,
text and video features from the virtual agent driven conversation
to extract both and deep learning based and interpretable features.
These included sentence embeddings for text, eGeMAPs features
along with embeddings of audio signal from the DeepSpectrum
deep learning model, and pose, gaze and action unit features from
videos. They proposed using the attention mechanism both within

and between modalities and showed large improvement with re-
spect to the baseline. Interpreting the predictions has been limited
to modality-level understanding that text features were more im-
portant (higher attention weight) while both audio-visual features
were given less but equal importance in the prediction.

Baki et al. [3] used features from prosody, verbal, and action
units modalities for predicting levels of mania in persons with
bipolar disorder. SHAP explanations for decision fusion among
unimodal features indicate that formant frequencies, loudness, jit-
ter and shimmer are some of the most contributing features in
prosody. Lip corner puller (AU 12) and chin raiser (AU 17) from
action units, and religious talk and linguistic modality are also some
top predictors for mania level in bipolar disorder.

Following the preliminary study by Cariola et al. [6] on lin-
guistic differences between mothers with and without history of
depression, Bilalpur et al. [5] predicted history of depression among
mothers. They used verbal and non-verbal (without prosody) be-
havioral features extracted from mothers for the prediction task. By
eliminating collinear features and using 15 features from different
modalities, a 78% separability was reported. Among many other
correlations with depression, they found that depressed mothers
tend to be less analytic, use more negations and comparisons, smile
with less intensity and talk less.

Barring differences in the nature of the problem, most recent
work fails to include one or more modalities that may contribute to
depression detection. Bilalpur et al. [5] omitted prosody in studying
the history of depression among mothers. Alghowinem et al. [2]
limited features to prosody, turn dynamics (referred to as speech
behavior) and dynamics of the face and head. Ray et al. [28] omitted
effect turn dynamics. To understand multimodal behavior, we use
a comprehensive set of verbal and non-verbal features that were
not studied in conjunction before. Our feature set consists of facial
action units, face and head dynamics, speech behavior, prosody,
and linguistics.

To identify the relative contribution of features within and be-
tween modalities, we use a SHAP-based ranking approach. SHAP
for feature selection was earlier explored by Marcilio et al. [21]. In
the process of selection, they introduced masked features to replace
the existing ones while respecting the rank order. Later PowerSHAP
[32] was proposed that introduced one random feature into the
existing set of features. The feature selection is performed based on
the intuition that an informative feature on average has a higher
mean absolute SHAP value over a random feature.

Existing SHAP-based feature selection methods either preserve
the number of features through masking or increase them by in-
troducing random features in the process of feature selection. Our
proposed approach in subsection 3.5 focuses on both decreasing
the number of features and increasing the performance.

3 DATASET AND METHODS
3.1 Dataset
The mother-child dyadic interaction dataset from Nelson et al.
[23, 24] was used in this work. Mothers and their adolescent child
were involved in a 15-minute problem-solving interaction. De-
pressed dyads were recruited based on the mother’s history of
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treatment for depression and elevated current depressive symp-
toms. A non-depressed comparison group consisted of dyads with
mothers with no history of treatment for depression and no cur-
rent symptomatology. 84% of participants were White; minorities
were distributed across American Indian/Alaskan, Native Hawai-
ian/Pacific Islander, African American or multiple ethnicity. Age
range in children was limited to early adolescence, and all families
were low-income. Audio was captured at 16kHz and video at 30fps
with dedicated hardware for mother and child. Though 152 inter-
actions were transcribed, 4 of them were excluded due to the lack
of manual observational codes (see subsection 3.3). This resulted
in 148 dyads. 73 dyads had a mother with history of treatment for
depression.

3.2 Multimodal Features
To derive multimodal features, we used various computational
frameworks available for affective computing. The resultant fea-
tures comprised Action Units (AU), Face & Head dynamics, Speech
Behavior, Linguistic and Prosody modalities. Features were lim-
ited to those from the child. The constituents of these modalities
along with how they were used in the classification framework are
discussed below.

Action Units. The occurrence and intensity of facial muscle move-
ments based on the anatomically-driven FACS (Facial Action Cod-
ing System) [9] were included in the analysis. Both intensity and
occurrence dimensions predicted from the AFARtoolbox [11, 25]
were used to operationalize duration. These were then summarized
through mean, minimum, maximum, standard deviation, interquar-
tile range and variance statistics. Both variance and standard de-
viation were included as features to account for their non-linear
relationship, which would escape a linear classifier (in this work,
SVM with a linear kernel). To quantify duration, occurrence like-
lihoods of AUs were thresholded at 0.5 to define the presence of
an AU. Because duration of the dyadic interaction tasks could dif-
fer, duration of continuous AU occurrence was normalized by the
duration of the dyadic interaction task. A similar approach was
followed for AU intensity. This resulted in 156 features.

(1) Intensity for AUs 6, 10, 12, 14, 6+12 (positive affect)
(2) Likelihood of occurrence for AUs 1, 2, 4, 7, 15, 17, 23, 24
(3) Duration of occurrence for AUs 1, 2, 4, 6, 7, 10, 12, 6+12, 14,

15, 17, 23, 24

Face & Head Dynamics. Face and head dynamics primarily con-
sisted of facial landmarks and head displacement, velocity, and
acceleration along roll, pitch and yaw derived from AFAR toolbox
[25]. In addition to the dynamics of the head, its orientation and
changes along the same were also quantized as:

(1) Displacement, velocity and acceleration along roll, pitch and
yaw

(2) Duration of head oriented left / right (similarly up / down
and clockwise (CW) / anticlockwise (ACW))

(3) Mean duration of head aversion
(4) Rate of change of head orientation (left to right, up to down,

and CW to ACW)

Facial landmarks were also used to extract eye-based activity
such as distance between eyelids, duration of eye-closure and blink-
ing rate. The following is an enumeration of features obtained using
facial landmarks.

(1) Displacement, velocity and acceleration for 49 facial land-
marks

(2) Distance between eyelids for each eye
(3) Eye-closure duration for each eye
(4) Blinking rate for each eye
All the features described above were summarized as mean, min-

imum, maximum, standard deviation, variance and interquartile
range except the blinking rate and mean duration of head aversion.
This resulted in 137 features that capture face and head activity. We
followed the convention from [5] towards feature extraction.

Speech Behavior. The speech behavior features were extracted
using manually segmented utterances from the recorded audio.
Segmented utterances from audio were then used to identify inter-
individual pauses. An inter-individual pause was defined as the time
elapsed between end of the current utterance and the beginning of
the next utterance. These utterances were characterised by speaker
change.

Speech Behavior features include duration of turns, duration
of overlapping speech, and duration of inter-individual pause. To
resolve the ambiguity of the ownership of pauses and overlaps, the
convention from Jaffe et al. [18] was adopted. Overlapping speech
was assigned to the listener while the inter-individual pause was
attributed to the speaker. All features were normalized for the dura-
tion of the interaction and quantified as sum (total duration), mean,
minimum, maximum, standard deviation, variance and interquartile
range. The resultant 21 features capturing the turn dynamics of the
dyadic interaction were also used for depression prediction.

(1) Duration of inter-individual pauses and overlapping speech
(2) Spoken duration

Linguistic. The Linguistic Inquiry Word Count (LIWC) frame-
work [27] was used to capture various attributes of the spoken
language. About 93% of spoken words were found in the LIWC dic-
tionary following which the coverage variable “Dic” was dropped
because of its lack of relevance to the prediction problem. To ex-
clude features that were primarily targeted at the written language,
9 punctuation categories (represented as AllPunc, Period, Comma,
Colon, SemiC, Quote, Apostro, Parenth, OtherP in LIWC) were elim-
inated from the study. The 83 resultant features then spanned across
several LIWC categories such as linguistic processes, psychologi-
cal processes, cognitive processes, perceptual processes, biological
processes, personal concerns and spoken assents and disfluencies
(disfluencies such as repetition of partial words or phrases were
represented through a hyphen in the transcription process).

Prosody. Prosody features consisted of the eGeMAPS [12] fea-
ture set from Opensmile (version 3.0) [13] framework. Manually
segmented audio identified by the speaker was used to select the
voiced portions of the children in the interaction and correspond-
ing features were used. 27 low-level descriptors (LLDs) identified
in [1] along with their first and second-order differences were of
interest towards prosody. Briefly, the LLDs consisted of pitch, jit-
ter, shimmer, loudness, Harmonic-to-Noise-Ratio (HNR), formant
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frequencies, MFCCs, Pitch-to-Harmonics difference ratio, Hammar-
berg index and slope in different spectral bands. These features
were then summarized using mean, minimum, maximum, stan-
dard deviation, variance and interquartile range for prediction. This
resulting 486 features represented prosody and its dynamics.

Despite some recent evidence [31] that articulatory features
outperform eGeMAPS, our choice of eGeMAPS is based on the
finding that it is a robust predictor across cultures and languages
[1].

3.3 Manual annotation by experts
Living In Family Environments (LIFE) system is an observational
coding framework proposed by Hops et al. [17]. It includes separate
codes for non-verbal and verbal measures of affective interpersonal
behaviors displayed by family members. The non-verbal and verbal
codes are combined to define four constructs–aggressive, dysphoric,
positive and other (mostly neutral). The manually annotated con-
structs followed a stop-frame protocol where onsets were annotated
on every behavior change. Two highly trained coders supervised
directly by a master coder and indirectly by an investigator with
significant expertise in the LIFE coding protocol [17] annotated the
videos. Inter-rater reliability was established prior to the initiation
of coding and monitored regularly, throughout. Inter-rater reliabil-
ity (Krippendorf’s alpha) was 0.66 [33]. The relevance of constructs
to depression was demonstrated by [30] in which construct-coded
mother’s behavior during mother-child problem-solving interac-
tion were found to be significant predictors for future onset of
adolescent depression. The LIFE system has also been shown to
discriminate between depressed and non-depressed adolescents
on their own coded behavior. Such outcomes motivated the use of
observer ratings of constructs as a baseline with which to evaluate
computational multimodal measures.

Separate Support Vector Machines (SVM) were constructed for
manual measures (referred to as "constructs" in the LIFE scheme)
and multimodal computational measures. Each of the four LIFE
constructs was assigned duration and frequency (analogous to the
rate-per-minute variable used in [30]) attributes. The duration of a
given construct is defined as the time elapsed between the onset
of one construct and the onset of the next. Durations were sum-
marized using 6 summary statistics: mean, minimum, maximum,
variance, standard deviation, and inter-quartile range correspond-
ing to that for the multimodal computational features. In addition,
the frequency (number of instances of a given construct / duration
of the interaction) of each construct was also included. This resulted
in 28 features that represent manually coded constructs.

3.4 Experimental Design
The classification setup included Support Vector Machines (SVM)
with linear and polynomial kernels. The choice of SVM was based
on its generalization capabilities due to the max-margin criterion
and previous use in detecting depression [5, 8]. In addition to the
choice of the kernels, the hyperparameters also included the cost
of misclassification C. All features were Z-score normalized. Multi-
modal classifiers through early and late fusion strategies described
below were also used.

3.4.1 Early fusion. Early fusion of features from different modali-
ties included concatenation of unimodal features before being used
to train the classifier.

3.4.2 Late fusion. For late fusion, decisions from trained unimodal
classifiers were combined using a weighted sum criterion. Unlike
the early fusion strategy, the late fusion had additional hyperparam-
eters i.e. the fusion weights used to combine the unimodal decisions.
These weights were determined using a grid-search on a [0, 1] scale
in steps of 0.1 and the best setting was identified using a nested
cross-validation described below.

A five-fold testing with a nested four-fold cross-validation was
used to determine the best hyperparameters in all experiments
including the choice of optimal features, and fusion weights for late
fusion wherever necessary. All hyperparameters were determined
based on the mean accuracy over the validation sets in the nested
step. These were then used to report the test performance over
the unseen data in the outer loop. Prediction performance was
evaluated using mean accuracy, positive (PA) and negative (NA)
class agreements across the five outer folds. Definitions of PA and
NA are described in Girard et al. [14].

3.5 SHAP for feature selection
Approximate Shapley values have been traditionally used for inter-
preting model predictions. They were used to identify top features
that influenced classifier decision in the multimodal prediction
of mania [3] and history of depression [5]. Their model-agnostic
nature and the availability of fast solutions for the approximate com-
putation of Shapley values through the SHAP framework are some
of the factors that contributed to their pervasive use in affective
computing. Shapley values (Equation 1) correspond to the contribu-
tion made by a given feature when it was present and marginalized.
They can be approximated using the Kernelized SHAP [20] ap-
proach to determine the SHAP values.

𝜑 𝑗 (𝑣) =
∑︁

𝑆⊆{1,2,...,𝑚}\{ 𝑗 }

|𝑆 |! (𝑚 − |𝑆 | − 1)!
𝑚! (𝑣 (𝑆 ∪ { 𝑗}) − 𝑣 (𝑆)) (1)

where 𝜑 𝑗 is the Shapley value for the j𝑡ℎ feature, 𝑣 is the predic-
tion model,𝑚 is the total number of features and 𝑆 is a subset of
features.

The strength of a feature’s influence on a prediction is directly
proportional to absolute SHAP value and polarity determines its
inclination towards a given category. To determine feature ranking
over a dataset, given a prediction model, the mean absolute SHAP
value over the dataset calculated per feature is used to define how
much they influence the prediction model. Higher the SHAP value,
more discriminative ‘power’ is held by the feature. We propose
features ranked by their mean absolute SHAP value be iteratively
added in steps of k=10 as long as they demonstrate an increase in
the mean validation accuracy in the nested folds (see Algorithm
1). Differences in the optimal features between outer folds were
observed. For example, say, 𝑂𝐹1 were the optimal features for fold-
1 while 𝑂𝐹2 were the optimal features for fold-2 where 𝑂𝐹1 ≠

𝑂𝐹2. In such case, to prevent excessive feature rejection, the union
of optimal features (𝑂𝐹1 ∪ 𝑂𝐹2) across outer folds was used for
testing. Figure 1 presents an increasing validation accuracy trend



SHAP-based Prediction of Mother’s History of Depression to Understand the Influence on Child Behavior ICMI ’23, October 9–13, 2023, Paris, France

Table 1: Detection performance for children of mothers with history of depression using child features. Bold indicates the best
performance.

No feature selection SHAP-based feature selection
Modality #features Acc PA NA #features Acc PA NA

Observer ratings 28 0.595 0.485 0.667 N/A N/A N/A N/A
Action Units 156 0.602 0.596 0.559 130 0.606 0.601 0.565

Face & Head dynamics 137 0.522 0.425 0.408 120 0.499 0.426 0.371
Speech Behavior 21 0.559 0.542 0.565 21 0.559 0.542 0.565

Linguistic 83 0.591 0.532 0.615 78 0.564 0.502 0.580
Prosody 486 0.645 0.588 0.646 197 0.740 0.716 0.729

Early Fusion 883 0.634 0.603 0.638 546 0.714 0.687 0.703
Late Fusion 883 0.593 0.539 0.602 546 0.680 0.649 0.645

Shapley on Early Fusion N/A N/A N/A N/A 225 0.769 0.752 0.759

in different folds as a result of the proposed feature selection using
SHAP.

Algorithm 1 SHAP-based greedy feature selection for 𝑗𝑡ℎ outer
fold in nested cross-validation scenario
Require: Dataset 𝐷 with𝑚 features, where 𝐷𝑚

𝑣𝑖 𝑗
is 𝑖𝑡ℎ validation

set nested in the 𝑗𝑡ℎ outer fold.𝑚𝑒𝑎𝑛𝑆𝐻𝐴𝑃 function returns the
mean SHAP values from validation sets in 𝑗𝑡ℎ outer fold.

Ensure:
Optimal features 𝑂𝐹 𝑗 ← 𝑙𝑖𝑠𝑡 ()
𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 0.5
𝑘 ← 10 ⊲ Let features be evaluated in increments of 𝑘 = 10
𝑟𝑎𝑛𝑘𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ←𝑚𝑒𝑎𝑛𝑆𝐻𝐴𝑃 (𝐷𝑚

𝑣𝑗
)

for i in range(0, m, k) do
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑡𝑢𝑑𝑖𝑒𝑑 ← 𝑟𝑎𝑛𝑘𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 [𝑖 : (𝑖 + 1) ∗ 𝑘]
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑇𝑜𝐸𝑣𝑎𝑙 ← 𝑂𝐹 𝑗 + 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑡𝑢𝑑𝑖𝑒𝑑
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑡𝑟𝑎𝑖𝑛𝑆𝑉𝑀𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑇𝑜𝐸𝑣𝑎𝑙)
if 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 then

𝑂𝐹 𝑗 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑇𝑜𝐸𝑣𝑎𝑙
𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

end if
end for
return𝑂𝐹 𝑗

4 RESULTS
Detection performance for children of depressed mothers is sum-
marized in Table 1. With no feature selection, both unimodal and
multimodal features can reliably detect the same. However, there is
a clear distinction in the efficacy of various modalities in achieving
it. The prosody features achieved 64.5% accuracy and is the best
performing modality including against the fusion methods such
as early and late fusions. Early fusion of modalities with 883 fea-
tures achieved comparable performance with prosody, however, at
a cost of 1.8× more features. Late fusion on the other hand under-
performed as compared to early fusion. Among unimodal features,
action units and linguistic features achieved 60.2% and 59.1% ac-
curacy respectively. This is despite almost 2× fewer features in
linguistic modality. Speech behavior with a relatively small set
of features, can predict at 55.9% accuracy. However, the face and

head dynamics performs barely above chance-level with 137 fea-
tures. When compared against the manually annotated constructs,
most unimodal features (except face and head dynamics and speech
behavior) outperform them. Fusion methods, particularly early fu-
sion exceeds the constructs by over 6% accuracy while late fusion
performs comparably to constructs. Detection using prosody also
outperforms constructs by 5% accuracy. Despite the step size k=10
used in feature selection, the final features are non-multiples of
k because of the union of the optimal features across outer folds.
However, the optimal features observed per-fold were multiples of
k.

The SHAP-based feature selection has offered performance im-
provements for prosody and fusion methods. Prosody features ex-
perienced a close to 10% improvement in accuracy with 2.5× fewer
features. Interestingly, such behavior was not observed with any
other modality. This suggests that the SHAP-based feature selection
is likely sensitive to the nature of the modality. Barring face and
head dynamics and linguistic modalities where the performance
dropped, other modalities have performed similarly to no feature
selection with a limited reduction in the number of features. On
comparing the class-level agreements (i.e. PA and NA), we notice
that positive agreement increased by about 13% while negative
agreement increased by 8.3% for prosody. Late fusion performed
similar to prosody, where accuracy increased by 9% with PA and
NA increased by 11% and 4.3% respectively. This pattern among
feature selection based on ranking through SHAP values suggests
that it prioritizes preserving features that correspond to the posi-
tive (i.e. children of depressed mothers) class. While early fusion
has experienced an 8% increase in accuracy, it has offered at-par
improvements to both positive and negative classes.

To understand how well the feature selection strategy works in
the multimodal context, we further performed SHAP-based feature
selection on the early fusion of previously selected unimodal fea-
tures (see Shapley on Early Fusion in Table 1). Results show that
this considerably reduces the number of features by about 2.4×
with a 5.5% improvement in accuracy. This feature selection for
multimodal features approach outperforms the constructs by over
17%.

Having established that differences in child behavior can be
reliably detected, further attempts were made to identify the fea-
tures that differ the most between them. Table 2 presents the 20
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Figure 1: Effect of feature selection on validation accuracy
in Early fusion with SHAP-selected unimodal features.
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13% Linguistic (39)
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Speech Behavior (5)1.5%

Figure 2: Relative contribution of eachmodality and the num-
ber of features each includes. The total number of features
for all modalities sums to 225.

most contributing features from the best performing Shapley on
Early Fusion classifier in Table 1. While SHAP values provide an
understanding of individual features, to accommodate for the large
number of features in each modality, modality-wise contributions
were calculated as the ratio between mean absolute SHAP values of
all features from a given modality to mean absolute SHAP values
of all features across modalities (Equation 2).

𝐶𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑚 =

∑
𝑗

∑
𝑖 |𝑆𝐻𝐴𝑃𝑖 𝑗𝑚 |∑

𝑘

∑
𝑗

∑
𝑖 |𝑆𝐻𝐴𝑃𝑖 𝑗𝑘 |

(2)

where 𝐶𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑚 is the normalized contribution of modality
𝑚 and 𝑆𝐻𝐴𝑃𝑖 𝑗𝑘 corresponds to the SHAP value for the 𝑖𝑡ℎ feature
from the 𝑘𝑡ℎ modality in the 𝑗𝑡ℎ sample.

Modality contributions through Figure 2 shows that the prosody
constitutes the most discernable features. With 97 (5× reduction wrt
original unimodal prosody without feature selection) features out of
the final 225 features (i.e. 43% of features), its modality contribution
is 46.1%. This is followed by action units, where 21.8% features
contributed 20.6% based on the SHAP values, a total 2.8× fewer
features when compared to the original features. Similarly, the
linguistic features with 17.3% (2.4× reduction) of the final features
it contributed 18.8% and face and head dynamics with 15.5% (3.9×
reduction) of the final features contributed 13%. Speech behavior

Table 2: SHAP ranking of top-20 features grouped by modal-
ity. Modalities and features within modalities are listed in
order of their relative contribution.Depression column shows
the overall ranking of each feature across all modalities and
the sign of correlation between feature with predicted de-
pression. Red indicates positive correlation; purple, negative
correlation.

Modality Feature Depression

Prosody

MFCC4 rate of change 3
spectral slope 0-500 change 4

loudness change 5
F1AmpLogRelF0 rate of change 6

spectral flux change 8
alpha ratio 11

F1 bandwidth change 16
F2AmpLogRelF0 rate of change 17

F1 rate of change 20

Action Units

AU 4 mean occurrence 2
AU 4 occurrence variance 7
AU 4 occurrence IQR 14
AU 15 occurrence max 15

Linguistic

Body 1
Differentiation 9

Home 10
Focus present 12

Insight 13
six-letter word 19

Face and Head dynamics landmark velocity IQR 18

had a 4.2× reduction in the number of features against its original
21 features with a marginal 1.5% modality contribution.

5 DISCUSSION
Computational measures outperform manual annotations:
Comparing manually annotated observer ratings and computa-
tional measures through multimodal features, multimodal features
were found to be more informative of the impact of depression
on child behavior. In addition to being better predictors (due to
higher accuracy), they also provided insight into how different low-
level interpretable features differ between the groups of children.
Manual annotations on the other hand are limited by their con-
stituent high-level descriptions of behavior and how reliably they
can be identified by annotators. Despite the advantages of using
computational multimodal features over manually coded behavior,
they are susceptible to the limitations of the prediction framework
used for feature extraction and are relatively more sensitive to the
data collection setup. For example, the face and head dynamics
features extracted from AFAR toolbox [25] are limited at extreme
head pose and occlusions due to the failure of face detection and
tracking algorithms. Similarly, data collection requirements such
as near-frontal camera orientation and speaker-separated audio
in proximal environments make data collection for multimodal
features challenging.

A novel feature selection approach through a model interpre-
tation solution (Shapley Additive Explanations) demonstrated its
efficacy with prosody features. Unlike other modalities, feature
selection in prosody resulted in 2.5× fewer features and a 10%
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increase in accuracy. This shows the sensitivity of the feature selec-
tion approach with modality. The effectiveness of prosody features
in predicting behavioral differences is not new. Yang et al. [34]
showed that naive listeners can identify depression severity from
vocal prosody. Our study furthers this understanding in the novel
context of differences in child behavior due to mother’s history of
depression. While simple concatenation (early fusion) of unimodal
features after feature selection did not result in any performance
improvement, further feature selection to account for inter-modal
interactions through the Shapley on early fusion resulted in the best
performing model with 76.9% accuracy through reduced overfitting
and 4× reduction in the original features.

Body and Home: The top-20 features ranked by their SHAP
values (Table 2) from the best performing Shapley on Early fusion
model are a mixture of linguistic, prosody, action units and face and
head dynamics modalities. The linguistic features captured physical
processes related to body, differentiation of thoughts, words related
to home environment, focus present, insight words and usage of
complex language (six-letter words). Body related words in the
dataset include references to hair, sweaty, fat, shoe, tongue, hands
etc. In the context of mother-child interaction, their usage was
found to be associated with personal hygiene concerns in children.
To list a few, these include: brushing hair, choice of dreads, taking
shower and ear piercings. Interestingly such references were lower
in the children of depressed mothers when compared to the children
of non-depressed mothers. Differentiation words such as but, except
and versus were seldom used by children of depressed mothers.
Words related to the home environment through references to
room, shower, bed, chores, neighbors, landlord, rent, staying home
alone, using the bathroom all the time, issues with commute such
as driving home and back to school, organising stuff around the
house (ex. don’t put that in the hall closet) were found to be higher
in the depressed group. Lower references to personal hygiene but
increased references to home environment suggest that children
of mothers with history of depression were invested in discussing
issues related to life at home and/or school over concerns about
personal hygiene that are commonly observed among children.
Similarly focus on present and usage of words of insight such
as think, know and consider that capture thinking styles through
cognitive mechanisms, and complex language was found to be
higher among children of depressed mothers.

Effectiveness of prosody dynamics: We found that the dy-
namics of prosody through their first and second-order differences
were highly influential in detecting the children of depressed moth-
ers over the original eGeMAPS prosody features. For example, the
rate of change of MFCC4 component was lower in children with
a depressed mother. Similar trend was observed with change in
spectral slope at 0-500Hz. The MFCC and spectral slope features
capture energy in different frequency bands during speech pro-
duction [8]. Ozdas et al.’s work [26] on jitter and spectral slope for
predicting suicide and depression suggests that speech in near-term
suicidal and depressed individuals has increased energy in the high
frequency (300–3000 Hz) bands. As symptoms subside, the energy
activity returns to the lower band [29]. While our findings on spec-
tral slope do not directly compare the low vs. high-frequency bands,
they suggest that changes in lower band are limited among the chil-
dren of depressed mothers. Alpha ratio, the ratio of energy between

50Hz to 1kHz and 1kHz to 5kHz suggests an increased activity in
lower frequency bands among children of depressed mothers. This
is contrary to our earlier [26, 29] understanding of spectral features
where high-frequency activity was observed with depression and
suicidal ideation. Spectral flux captures the differences in energy
between successive speech frames. This is also closely related to
the perceived vocal loudness. Both features capture vocal arousal
[12]. On these lines, we found that both spectral flux and loudness
exhibit similar behavior that show that changes in arousal (due to
change in loudness) and its rate of change (change in spectral flux)
are higher among children of depressed mothers. This suggests that
conflict resolution involving mother with a history of depression
leads to more dynamic conversations than their non-depressed
counterparts.

Formant frequencies are associated with changes in the vocal-
tract resonance cavity and represent the articulatory effort in speech
production. We notice that both the changes in the first formant
frequency (F1) bandwidth and the rate of change of its (F1) fre-
quency is higher in children of depressed mothers over children
of non-depressed mothers. Though literature [8] shows some evi-
dence of the role of formant frequencies in depression, limitations
in accurately capturing the relationship between articulatory be-
havior and formants, and improper glottal closure resulted in lack
of replicable results. These factors make it hard to make conclu-
sive inferences. Relative energy in first (F1) and second formants
(F2) with respect to the fundamental frequency (F0) correspond to
the perceived voice quality [22]. They capture excessive nasal and
clicky sounds. We found that the rate of change of voice quality in
the first (shown as F1AmplogRelF0 in Table 2) and second formants
(shown as F2AmplogRelF0) also differ among children based on
their mother’s history of depression.

Negative affect and arousal: Both AU 4 (lowering eyebrows)
and AU 15 (lip corner depressor) associated with negative emotions
[4] appear in the top contributing features. AU 4 is found in ex-
pressions of anger and fear while both AUs 4 and 15 are observed
in sadness. AU 4 occurrence appears in top features as various
summary statistics. It suggests increased expressions of negative
emotion occurrences along with high variance and inter-quartile
range i.e. more dynamic expressions were observed in children
whose mother has a history of depression. AU 15 occurrence, par-
ticularly sadness was also highly likely among children of depressed
mothers. Face dynamics had only one top feature–arousal measured
through landmark velocity was found to be flat (or less dynamic)
in the children with depressed mothers.

Limitations: Four limitations may be noted. One, the context of
mother-child interaction raises the question whether the behavioral
differences among children we found would generalize to their
interactions with other family members, peers, or other persons.
Two, participants were low-income, predominantly white, and from
a single city in the US. Whether the findings would apply to families
in other parts of the US or other countries or cultures remains to
be found. Three, the choice of classifier leaves room for exploring
ensemble approaches such as random forest and XGBoost. Four,
generalization of the proposed feature selection approach across
different prediction frameworks remains as future work.
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6 CONCLUSION
Our work addresses the question of behavioral differences in ado-
lescent children of mothers with and without depression. We frame
the problem as a detection task defined by mothers’ depression
status and use multimodal computational measures of child be-
havior. Using a novel SHAP-based feature selection approach, we
found that reliable prediction can be performed using both uni-
modal (especially, prosody) and multimodal features. Prosody was
the single most informative feature set. That was followed by fa-
cial action units, linguistic features, face and head dynamics, and
speech behavior. A comparison model that used subjective manu-
ally annotated features paled in comparison to that from the leading
computational models.

SHAP-based feature selection significantly reduced the number
of features and increased model performance. Shapley analysis re-
vealed that children of depressed mothers have different spectral
dynamics, voice quality and amplitude. Their facial actions reveal re-
duced arousal and greater negative affect. Linguistic features differ
as well. Such naunced behavioral differences between children with
and without depressed mothers extend the existing understanding
[15] of the influence of mother’s depression on their offspring.

The study’s limitations included: Dyadic interactions were lim-
ited to mothers and children; diversity was limited to low-income
participants from a single city and country; and alternative classi-
fiers and frameworks remain to be explored.
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