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Abstract

Fundamental frequency {f;) contours derived from the speech of 35
mothers to their 4-month-old infants were quantified for two
experimental conditions, one in which the mother was instructed to
seek her infant’s attention and a second in which the mother was
instructed to express approval of her infant’s action. In addition to
conventional descriptions (e.g. mean and standard deviation of f,, and
utterance duration) the contours were subjected to modelling using 16
equations (1 linear and 15 non-linear) selected to reflect customary
qualitative descriptions of [, contours (e.g. Gaussian, rising, falling).
Curve-fitting results confirmed that these infant-directed utterances
were fit extremely well by at least one function. The average
maximum R? value obtained across all 16 equations was 0-83,
Furthermore, discriminant analysis demonstrated that these two
utterance types could be differentiated with 76% accuracy by these
curve-fit results alone. Discrimination improved to 92% accuracy,
however, when additional, more global descriptors were included in
the discrimination function {e.g. utterance duration, mean
fundamental). These results suggest that infants may be responsive to
specific prosodic stimuli, which may involve distinct voice dynamics or
more general speech signal characteristics, such as overall pitch, pitch
variahility, or utterance duration,

1. Introduction

The suprasegmental dimensions of speech, which are usually conceptualized as being
overlaid on lexical, syntactic, and semantic linguistic constructs, have been widely
acknowledged as carrying a significant portion of the communicative intent of the
speaker. This information can be supplemental to that provided by the linguistic
structure of the utterance, or can provide essential elements of the intended meaning.
For example, in one commonly used experimental paradigm, it is only suprasegmental,
or prosodic, information that provides the contrastive stress necessary to distinguish
the utterance “BEV loves Bob?”, in which the speaker is questioning his assumption
that someone clse loves Bob, from “Bev LLOVES Bob?”, in which the speaker is
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questioning his assumption that Bev does not love Bob {e.g. Cooper & Sorenson, 1981).
In addition to their “syntactic” function, suprasegmentals convey essential information
about a speaker’s expressed emotion. Elation, for instance, is conveyed by increased
mean fy and f; range (Scherer, 1986). Nevertheless, despite ready acknowledgment of
the imporiance of suprasegmentals, researchers have been challenged to develop a
quantitative descriptive framework for this essential level of spoken language (Frick,
1985).

There are two obstacles to an adequate quantitative description of prosodic structure,
the more obvious of which is the lack of a sufficiently precise definition (i.e. one that
is both exhaustive in terms of the contributing phenomena and exclusive in terms of
other linguistic and paralinguistic dimensions) of what physical parameters comprise
prasody. Modulations of loudness, vocal pitch and vowel quality are usually included
in descriptions of prosody, although, among these parameters, vocal pitch might be
legitimately represented as primary, especially to the extent that loudness and pitch
covary. The second problem characteristic of prosodic parameters (e.g. vocal pitch and
loudness) is that their variation is not rigidly specified by linguistic rules, leaving them
highly susceptible to large inter- and intraspeaker variations, and to variations stemming
from linguistic content. The multitude of factors affecting these parameters may preclude
extracting the essence of the prosodic structure of an utterance, but it seems reasonable
to seek to isolate and specify individual prosodic parameters, such as variation in vocal
pitch in order to evaluate their contribution to spoken communication. The present
investigation was designed to address this sccond problem of describing prosodic
consistencies, of which we are well aware as speakers and listeners, but find difficuit to
describe in quantitative terms,

It is possible to create experimental conditions or to observe natural conditions in
which these difficulties are considerably reduced. Speaking contexts characterized
by accentuated and stereotypic prosody may yield wider ranging utierances with
proportionately less variability across repetitions. Recitation of rote phrases (e.g. nursery
rhymes, the alphabet) and speech intended for listeners with reduced perceptual
capacities (e.g. infants, pets) characteristically exhubit these properties (Ferguson, 1964).
One promising direction of investigation has been the investigation of infant-directed
speech. Speech directed to infants is characterized by exaggerated pitch and intensity
changes and tends to exhibit a great deal of stereotypy (Stern, Spieker & MacKain,
1982; Stern, Spieker, Barnett & MacKain, 1983; Fernald & Simon, [984; Fernald,
1989). Moreover speakers intuitively recogmize that their message is primarily, if not
solely, communicated via suprasegmentals.

Appropriately taking as justification the essential contribution of prosodic features
to spoken communication and the need to communicate their description into more
general models of language, most researchers have had to rely on qualitative observations
of vocal pitch and intensity contours to describe this important level of communication
(e.g. Garnica, 1977, Stern, Spieker & MacKain, 1982; Stern et al., 1983; Fernald &
Simon, 1984; Bettes, 1988; Fernald, 1989). Fernald and her colleagues {Fernald &
Simon, 1984; Fernald, 1989), and Stern, Spieker, and MacKain (1982) have employed
such descriptors; rising, bell-shaped (or rise-fall), slow falling, rapidly falling, and
complex. Operational definitions of these terms (e.g. inclusion of only those f, contours
with excursions of more than 128 Hz (Stern, Spicker & MacKain, 1982) or more than
13 semitones/s (Fernald & Simon, 1984), have enhanced quantifiable descriptions, but
have stopped well short of quantification of the shapes themselves. Notable exceptions
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have extracted target prosodic dimensions from running speech and applied those to
quantifiable correlates of the intended message (e.g. Pierrehumbert, 1990; Price, 1991).
The unfortunate consequence of this necessary accommodation of these especially
difficult data has been twofold: subjective interpretations are based on logistically
limited numbers of observations {i.e. reliable categorization is time-intensive), and
descriptions emerge that force naturally occurring utterances into more or less contrived
categories based upon an investigator’s a priori assumptions of the signal’s modulation,

What is required then is a method by which the essential suprasegmental properties
of an utterance can be extracted, quantified and summarized. The present investigation
was designed to address this need by evaluation of the discriminative potential of a
quantitative approach for one primary prosodic element f,, under conditions created
to elicit exaggerated exemplars. Vocal fundamental frequency has several desirable
characteristics as a dependent variable related to linguistic and affective intent: f is
one of the primary contributors to prosodic structure, is relatively easy to extract from
an acoustic signal, extends over the duration of a phrase or utterance, and has well
known underlying control parameters (e.g. vocal fold length and tension). Specifically
we focused on modulation of vocal fundamental frequency during mothers’ speech
directed to their 4-month-old infants under conditions in which intended meaning was
controlled. Given an infant’s putative lack of lexical, syntactic, or pragmatic knowledge,
we assumed that, whatever the message communicated during infant-directed speech
(IDS), it must be carried predominantly by suprasegmental features. (Recent work by
Mandel and Jusczyk, 1994, however, has demonstrated lexical processing in 4-5-month-
old infants presented with their own names as stimuli.) We exploited this limitation by
directing the mothers to convey specific messages, without specifying lexical content,
of approval or attention-seeking to their infants,

2. Methods
2.1, Subjects

Subjects of this investigation were the mothers from 25 mother-infant dyads. The age
of their infants at the time of the observations was 4 months (sp: 1 week}. Mothers
were screened for depression, which has been shown to affect IDS (Breznitz & Sherman,
1987; Bettes, 1988). All infants were first-born and experienced normal, full-term births.

2.2, Experimental protocol and conditions

Each mother-infant pair was seated face-to-face in a sound-treated studio. Following
a brief period of orientation and instruction there were two ordered conditions,
approximately 30 s to 1 min each in duration, during which the mother communicated
two different specified messages to her child. These two interaction conditions were
intended to elicit distinet pitch contours and were assumed to represent normal
communication conditions between mothers and their infants. The two conditions
included:

e an attention condition {AT), in which the mother was directed to draw her baby’s
attention to a red ring;
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s an approval condition (AP), in which the mother was directed to express approval
of her baby’s touching red ring.

Mothers reported that they were comfortable with these requirements and that they
felt that their productions were accurate representations of how they normally speak
to their babies.

Our selections of attention-eliciting and approval conditions were intended to meet
several criteria. These conditions represent commonly observed verbal behaviours in
mothers of young infants (Fernald & Simon, 1984), have been studied previously in
investigations of IDS (Fernald, 1989), and have been shown to be characterized by
contrasting pitch contours (Stern, Spieker & MacKain, 1982; Fernald & Simon, 1984,
Fernald, 1989). Specifically, attention-eliciting utterances are characterized by a rising
pitch contour, and expressions of approval are typically observed to manifest a
rhythmically rising and falling contour, which has been referred to as “sinusoidal” in
shape (Stern, Spicker & MacKain, 1982; Fernald, 1989).

2.3. Data collection

Data sources included:

e split-screen video recording of the mother’s and infant’s faces viewed face-on;

e audio recordings obtained from a microphone worn by the mother;

e accelerometric recordings obtained from accelerometers worn by the mother over
the thyroid cartilage of her larynx. These records provided isolated signals derived
from vibration of the larynx associated with vocal fold movement, and yielded
high quality waveforms suitable for fundamental frequency (f;) extraction;’

e both video channels, of all three audio/accelerometer channels, and a SMPTE
(Society of Motion Picture and Television Engineers) digital time code channel were
recorded directly to a professional quality videocassette recorder for subsequent
analysis. Only the acceleration signal was used in the present analysis, although
the remaining channels were used to clarify the location of the stimuli on the tape
and confirm the compliance of the mothers with the experimental protocol.

2.4. Signal processing and initial data reduction

Gur goal was to obtain one utterance for each of the two conditions from cach mother
to comprise a final dataset of 50 utterances. Because of occasional problems in signal
quality (e.g. production of high amplitude utterances by the mother, which overdrove
the amplification systems) and varying degrees of success by the mothers in complying
with the experimental directions, mothers contributed a variable number of utterances
to the initia} dataset from which the final set was randomly selected. On average, each
mother produced about three acceptable utterances per condition (range: 1-8 utterances).
In all, 364 utterances were recorded, of which 42 were discarded, 36 because they had
less than the minimum of 30 data points required for subsequent analyses, and six
because they yielded contours judged to be too inconsistent to be subjected to the semi-

'n fact, microphones or accelerometer-based signals could be used effectively. Statistical comparison of’
microphone vs. accelerometer-based signals by condition revealed no significant difference in the source of
the fundamental frequency signal IMANOVA F10,39)=0-946; P =10-504).
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automated analysic. Inclusion criteria for utterances in the initial dataset also included
a judgment by naive research assistants, who judged each utterance with respect to the
mother’s success in matching the constraints of the conditton (i.e. expressions of
approval or elicitation of attention}.

Initial processing of the recorded samples required two stages of parsing from the
taped sessions down to the individual utterances for analysis. First a segment of each
condition was generated by two trained observers. This segment exactly identified the
beginning and end times (using the SMPTE time code on the tape) of each experimental
period. The complete experimental periods were digitized using a commercially available
speech analysis hardware/software system (CSL, Computerized Speech Laboratory,
Model 4300, Kay Elemetrics Corp.) at 5000 samples/s to vield two large digitized
records for each mother, one for each experimental condition. The individual utterances
analysed were subsequently parsed from these files. Trained observers parsed individual
utterances from each condition on the basis of two operational criteria defining an
utterance: (1) an utierance represented the mimimum isolated string that could stand
alone as a compilete phrase or sentence (e.g. “Good boy! That’s good! Good boy!” was
parsed into three utterances); and (2) the utterance met the prescribed task conditions
of approval or attention eliciting (per Papousek, Papousek & Bornstein, 1985).

Internal validity of token parsing was assessed by a second parsing of the digitized
samples by a second coder. A randomly selected sample representing 21% of the total
dataset was used. Within each sample, an agreement was counted when the two coders
agreed that one, and only one, token occurred in the same segment of speech.
Disagreements were defined as those segments identified by one coder, but not by the
other. Interobserver agreement was 86 and 72% for identification of approval and
attention-eliciting utterances, respectively. Because rejected tokens (i.e. those periods
rejected as utterances by both observers) were not tallied, these values must be interpreted
as significant underestimates of the observers’ performance reliability,

The final dataset was comprised of one utterance randomly selected from each
condition for each mother. The pitch contour for each utterance was extracted using a
computer-assisted implementation of the CSL pitch extraction algorithm. Because
speech signals with higher fundamental frequencies are much more difficult to analyse
than those with a lower f; (as seen in adult male speakers), this algorithm was designed
to simultaneously provide a large number of analysis options for each utterance, thereby
allowing the technician to quickly select the optimal parameters for each speaker and
condition. For cach trace, the narrow band spectrogram and up to eight differeni f;
contours were computed and displayed by varying the width and overlap of the analysis
window applied to the digitized speech sample. Taking the shape of the narrow band
spectrogram as the most faithful representation of f, modulation, the technician selected
the f, contour that best matched the contour suggested by the narrow band spectrogram.
The numerical values and time markers of the selected contour were then exported to
an external file for subsequent processing and modelling.

Raw pitch contours extracted using the CSL, exhibited characteristic “dropouts” (i.e.
isolated analysis frames in which no pitch was detected even though they ar¢ bounded
by continuous f, contours) and gaps (i.e. periods of silence or non-voiced speech sounds)
typical of most pitch extraction algorithms. These discontinuities were unacceptable
for submission to mathematical modelling, which made additional processing necessary.
The curve-fitting algorithm accomtnodated non-voiced intervals by ignoring zero values,
as these points were not seen as contributing to the overall perception of the pitch
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contour and because sudden changes in value yiclded very poor fits. This restriction
required correction and smoothing of the raw f, contours. A customized program was
used to evaluate the variance within a moviag rectangular window three points wide
and corrected pitch estimation errors by doubling or halving the value of each successive
point to minimize the variance within the window (Katz, Moore & Cohn, 1992), The
assumption underlying this process was that most fj estimation errors result from
recognition of the wrong periodic signal as the fundamental. In fact the erroneous
estimates were usually half or twice the actual f, (i.e. 5f; or 2f;), so that whenever the
variance computed by the algorithm could be minimized by doubling the last point in
the window, an error of exactly half the real pitch (e.g. as if the algorithm had failed
to detect one zero crossing, vielding a frequency half of the real frequency) was assumed
and this point was adjusted accordingly. The technician inspected the result of this
correction to again verify the match of the extracted contour to the spectrographic
representation of the utterance. Following this correction of dropouts and pitch
extraction errors, these contours were smoothed using a commercial, Fast Fourier
Transform (FFT) based smoothing algorithm (TableCurve, Jandel Scientific). These
smoothed functions provided the final dataset for modelling. Fig. 1 illustrates the three
stages of this process of correction and smoothing.

The three panels of Fig. |1 demonstrate the progression from the initial f, contour
extracted using optimized parameters in CSL (a) through the corrected (b} and smoothed
(c) signals. The abrupt drops from the main contour are half-frequency errors resulting
from the low spectral density of higher frequency voices. These errors were corrected
by doubling the extracted frequency value to achieve the minimum variance among
adjacent points. In the example provided, the mean fundamental frequency can be seen
to be approximately 350 Hz. The lower spectral density resulting from the widely spaced
harmonics of the glottal source provides a relatively poor input signal for f, extraction,
with the most common error being one of extracting a frequency value that is half the
actual value (e.g. in a simple algorithm based on counting zero crossings, this would
be the equivalent of missing one of the zero crossings). Although the original contour
might have been acceptable for many applications, modelling required elimination of
discontinuities and compensation for quantization error, which is characteristic of f
contours. Finally, a conventional FFT-based smoothing algorithm was applied to reduce
the irregularities in the data caused by quantization error, the error introduced by the
relatively gross frequency resolution possible for brief non-stationary signals.

2.5. Modelling of pitch contours

The corrected and smoothed f, contours were subjected to modelling using a selected
subset of functions available in a commercial curve-fitting package (TableCurve, version
3-2, Jandel Scientific). We selected this subset of functions on the basis of their ecological
validity, as evidenced by their natural occurrence in biclogical systems, and because
they correspond to the qualitative descriptors used in previous research [i.e. rise, fall,
bell-shaped, and sinusoidal or complex (Stern ef al., 1982; Fernald, 1989)]. There were
16 functions grouped into seven classifications of curve type. (Classifications were
exclusive except for the power function, which was analysed in isolation as its own
classification and also as a member of the exponential classification.) Examples of each
of the classes of equations are provided in Fig. 2, which inciudes both rising and falling
variants of each function where appropriate, The 16 equations and their classifications
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Figure 1. lustration of initial signal processing following f; extraction. The
initial 2 s contour (a) exhibits frequent discontinuities, which result in part
from the {y extraction algorithm., Many of these discontinuities could be
resolved by correction for half-frequency errors (b). Quantization error, the
result of analysing fixed length frames of digitally represented waveforms, was
reduced by Fast Fourier Transform smoothing to yield the signal subjected to
madelling (c).
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Figure 2. ldealized representation of the seven types of functions applied to f,
contours. Rising and falling variants are shown where applicable, Each
category consisted of from one to six specific functions.

are provided in the Appendix. The smoothed f; contours were submitted for curve fit
analysis to each of these 16 functions, Goodness of fit, expressed as R?, the proportion
of variance in the token explained by the model, was evaluated for each function and
was also pooled within each of the seven classifications to yield an index for each
classification {e.g. a peak index represented the average R® value of the six functions
in that classification). These indices provided a further reduced dataset upon which
subsequent statistical analyses were based.

2.6. Additional descriptors of fundamental frequency contours

In addition to the curve-fitting analysis, several simple descriptors were computed for
each utterance. These parameters were selected as being representative of those most
frequently used in analyses of fundamental frequency and provided a comparative base
for the curve-fitting analysis. These conventional descriptors included: mean, standard
deviation, range and duration of the f, contour. These values were computed auto-
matically for each corrected and smoothed f, contour, and were associated with the fit
indices of the modelling analysis to comprise the complete dataset, which was subjected
to discriminant analysis.
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These two different parts of the analysis, curve-fitting and simple description of more
global quantities, represent two very different approaches to the data. Analysis of the
fit of an f, contour to a specific curve type entails the assumption that it is the shape
of the contour that distinguishes utterance types {e.g. a Gaussian-shaped contour would
be assumed to carry a meaning distinct from a decay contour). On the other hand,
descriptive statistics of the entire utterance imply that differentiation of meaning is
based on parameters such as the overall pitch of the utterance, the extent of the pitch
range covered, or simply the length of the utterance. These two approaches are not
mutually exclusive, however, and it seems likely that there is covariation among some
factors. For example, more complex contours (e.g. sine functions) probably take longer
to produce, such that the fit for sinusoidal functions covaries with duration.

3. Resuits and discussion
3.1. Modefling of f, contours

Qur efforts to model thes¢ naturally occurring f, contours were generally quite successful.
Considering the fit of all 16 functions to a given fy contour, the average maximum R?
value was 0-83 (sp=0-17; range 0-13-0-99) for all 50 utterances, confirming that in most
cases at least one finite function accurately described the modulation of fundamental
frequency during an utterance {i.e. accounting for 83% of the variance on average).
The average maximum R? values for the attention and approval conditions were 0-85
(sp=0-15; range =0-42-0-99) and 0-82 (50 =0-20; range =0-13-0-99). These coefficients
were not significantly different {F{1,48)=0-844; P=0-36). This finding supports the
suggestion that the modelling success of these techniques does not vary with utterance
type or suprasegmental pattern.

Fig. 3 illustrates the results of the algorithm in modelling two utterances using two
of the 16 equations, the sine function and the Gaussian peak function. The utterances
in this figure demonstrate excellent differentiation based on curve-fitting results with
each f; contour being fit well by only one of the two functions shown. Fig. 3(a) includes
the fit of a sine function to an attention utterance. The R? value for the fit of this curve
to the f; data was 0-108 (R?,jueea=0-000). Fig. 3(b) illustrates the fit of the Gaussian
peak function for the same pitch contour; R? was 0-875 (R®,4s =0-858) in this case.
Fig. 3{c) and (d) illustrate the fit of the same two functions to an approval utterance.
In these cases the sipe function seen in (c) yields a much better fit (R*=0875, R% jjustea =
0-870) than the Gaussian peak function seen in (d) for the same approval utterance
(R*=0-062, R gusea = 0-022). Tt is evident from this figure that very subtle diffcrences
in f; contour can give rise to significant modelling differences. This level of sensitivity
is very desirable in modelling attempts and in explanations of prosedic phenomena,
because it may be these small variations in vocal dynamics that yield perceptual
differences, which may be essential to transmission of intended meanings.

Two questions arise with respect to the success of the different functions and functional
categories in fitting specific functions: How well can mathematical functions describe
f; contours? and, Can these functions differentiate among intended meanings? Fig, 4
illustrates the distribution of maximum coefficients for the complete set of equations.
Separate distributions for the approval and attention conditions are given, as well as
the combined distribution. From this figure it is clear that the overall performance of
the peak function category contained the largest number of best fits, not only because
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it is the largest category (i.¢. with five functions), but also because the three functions
that most frequently fit the contours best (extreme value, error function and Gaussian
peak functions) were all members of this category. The intuitive appeal of this finding
was that subjective impression of these contours was that they usually tended to rise
and fall, although the height and depth of each phase was quite variable. Because the
specific curve fit to each contour was for a finite set of points, this finding does not
suggest that every contour rose from and fell back to a baseline level. Rather, the
finding was taken to suggest that these contours frequently reached a peak prior to the
end of the utterance. Furthermore, though it was mathematically possible for these
functions to demonstrate negative- rather than positive-going peaks, there were no
utterances that were best fit by negative-going peak functions. These results demonstrate
very consistent success in simple description of f, contours using a small, fixed set of
ecologically valid mathematical functions.

3.2, Discrimination of utterance types

The second question of interest in this investigation was whether or not utterance types
could be discriminated on the basis of differential curve-fitting results. Fig. 3 does not
help to resolve this issue, although there are some obvious differences in the results for
the two utterance types. For example the error function peak equation yielded the best
fit for attention utterances much more frequently than for approval utterances, and
the results for f; contours fit to the sine function showed the opposite effect. Accordingly,
evaluation by discriminant function analysis was completed to assess the overall utility
of these measures as discriminators, as well as the specific discriminative value of the
selected functions. To avoid overspecification of the model derived using discriminant
function analysis, we aggregated the curve-fit results within each function type, with
cach resulting aggregate representing the average of one to six R? values obtained for
individual functions. Aggregation reduced the number of parameters from 16 equations
to seven equation types.

The reliability of the composition of the function classification groups with more
than one equation (i.e. exponential, peak, waveform and transition functions) was
assessed by reliability analysis of each group. Table | summarizes the results of these
reliability analyses. All « coefficients were highly significant, confirming the assumption
that the functions within each group were each contributing to the group index, and
that the average of the R? values yielded a more reliable measure than any of the
individual coefficients. In fact, there was only one function for which removal of that
function from its classification group increased the group o coefficient, that being
logistic dose-response transition function in the transition group. In that case, removal
of the function yielded a change in the o coefficient from 0-840 to 0-911. Nevertheless,
there being no a priori justification for removing this single function, it was retained
in all subsequent analyses. This finding supported the aggregation of results for
individual fonctions into types before submitting these data to discriminant function
analysis.

Several additional preliminary steps were required to elucidate the context and the
limits of the discriminant function analysis. Initially we evaluated whether or not there
were differences in success of different equation types in modelling these utterances,
and whether or not there were significant differences between utterance types within
any of the individual function types. Table II summarizes the results of curve fitting
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TasLE I. Reliability analyses for composition of classification groups
with multiple functions contributing to the group index

Classification group Number of functions in o Coefficient
group

Peak 6 0-942

Transition 3 0-88%

Waveform 2 0-995

Exponential 3 0-598

TabLE II. Means and standard deviations of R? indices (i.¢. R? values aggregated within
function classifications) across subjects

Utterance Function classification
type

Linear Decay Peak  Transition Waveform Exponential* Power

Approval  0-31 (0-30) 0-13 (0:22) 066 (0-26) 0-45 (0-37) 0-64 (0-29) 0-26 (0-29) 0-38 (0-32)
Attention 017 (0:29) 016 (0-20) 0-77 (0-19) 0:54 (0-38) 0-57 (0-32) 0-43 (0-30) 053 (0-34)
Combined 0-24 (0-30) 0-14 (0-21) 0-72 (0-23) 0-49 (0-38) 0-61 (0-30) 0-34 (0-30) 0-45 (0-34)

* Between group pairwise comparison; F(1,48), P<0-10, For all other comparisons, F>0-10.

for cach equation type (i.e. 16 equations of seven types applied to all 50 utterances,
then aggregated by equation type). Inspection of this table readily reveals the striking
findings that peak and waveform functions generally were able to fit these contours
with the least error (average R*=0-72 and 0-61, respectively), and the fits to the decay
function were especially poor (R*=0-14). Furthermore, statistical comparison of curve-
fit indices between utterance types yielded only one significant difference (P<0-10);
exponential functions fit attention utterances (average R?=0-46} better than approval
utterances (average R2=0-30). What is not revealed in this table, however, is whether
or not some linear combination of the results for each index might provide an accurate
predictor of utterance type. Discriminant function analysis was undertaken to address
this question. As an aside, it is important to note, with respect to the bulk of the extant
literature in prosodic contours, that the finding for the linear index of an average R?
of 0:35 suggests that representation of f, contours as “rising” or “falling” is, at best,
inaccurate, especially to the extent that linearity is implied by these terms (cf. Fernald
& Simon, 1984; Fernald, 1989; Papousek, Papousek & Symmes, 1991),

The correlated variation of R? indices was also evaluated. In order to qualify as good
candidates for discriminating between utterance types, it was essential that the indices
not be highly correlated across utterance types. Table I1I includes the correlation matrix
resulting from a correlational analysis of all possible pairs of indices. The mean r#
value, 0:286 (sp=0-125; range 0-002-0-559} indicated that indices were only weakly
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TasLE 111, Correlation coefficients (#*) among function categories for all f, contours

Function category Linear Decay Peak Transition Waveform Exponential Power

Linear 1-000

Decay 0-337  1-000

Peak 0-200 0192 1-000

Transition 0-328 0233 0240 §-000

Waveform 0:396 0002 0306 0222 1-000

Exponential 0-355 0217 9129 0477 0168 1-000

Power 0-421 0306 0-384 0-559 0-235 0-295 1-000

TapLE IV. Within utterance means and standard deviations of f, and
utterance duration

Utterance type Mean f, (Hz)* Standard deviation  Duration (s)1

of f, (Hz)t
Approval 34573 (8197) 8721 (3767) 1:05 (037)
Attention 295:31 (103-89)  47-01 (21:89) 057 (0-27)

Combined 320-52 (96-05) 6711 (36:63) (-81 (0-40)

* F(1,48) = 3-63; P<0-10;
 F1,48)=21-28; P<0-0001;
+ F(1,48)=28-52; P<0-0001.

correlated across utterance types. This finding increased the discriminative potential of
the modelling indices.

Another consideration in differentiating these utterance types was a comparison of
modeling with differentiation and description using more conventional descriptors,
which are generally descriptive statistics derived from the global utterance. The major
weakness of the descriptors obtained in the present investigation (i.¢. f; mean, standard
deviation and duration) is that they fail to provide an accurate description of the fj
contour, although they may well serve simply to differentiate among different utterance
types. Accordingly, it is important to evaluate discrimination by modeling with reference
to what is possible through more conventional means.

A summary of the global descriptors obtained for each utterance type is provided in
Table IV. The differences between utterance types among these descriptors are quite
evident. Approval utterances had higher mean f, values [F(1,48)=3-63, P<0-10], ex-
hibited more variability in f, within each utterance [#(1,48)=2128, P<0-001], and were
longer in duration [F{1,48)=28-52, P<0-001] than attention utterances. These criteria
obviously differentiated the two utterance types, which might have been expected to
be quite discriminable by these features, given our intuitive impressions of attention-
seeking utterances and expressions of approval. Accordingly two discriminant function
analyses were completed, one using only the curve-fit results, and a second in which
the global descriptors were included.

The first discriminant function analysis successfully differentiated pitch contours of
the two utterance types on the basis of curve-fit results alone. These results are shown
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TabLE V. Stepwise results of discriminant function analysis for curve-

fit indices
Step Variable entered F P
1 Exponential index 3-770 0-058
Linear index 4917 0-012
3 Power index 4-645 0-006

TaBLE VI. Classification results of discrimination analysis using curve-

fit indices
Actual group membership Predicted group membership
Approval Attention
Approval 19 6
Attention 6 19

¥=13-52; P<0-001;
x=0-52; P<0-001,

in Table V. Of the seven equation types evaluated, only three entered into the discriminant
function. Predictably, given the between group difference for curve fitting, the exponential
index entered the equation first, followed by the linear and power indices. As seen in
Table VI this analysis yielded correct classification of 76% of the test utterances, with
correct and incorrect identifications distributed equally between types. This finding,
though not cspecially strong, confirmed that modelling of f; contours using ecologically
valid mathematical functions is an effective approach to differentiating a single pair of
utterance types. The more important aspect of this discrimination is that its derivative
steps include an accurate mathematical description (the average maximum R? value
across all 16 functions for each utterance was 0-83) of each f; contour. It is this combined
result of discrimination and description that we view as essential to the study of the
large datasets needed to form an understanding of prosodic phenomena.

The second discriminant function analysis, which included the three global descriptors
as well as the curve-fitting results, yielded a six factor model including four curve-fit
indices and two global variables. The results are shown in Table VII. Classification by this
model, shown in Table VHI, yielded 92% accuracy with three erroneous classifications of
approval utterances and only one for attention utterances. Although this is a very
strong finding with respect to our ability to classify naturally occurring f; contours, it
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TabBLE VII. Stepwise results of discriminant function analysis including
curve-fit indices and global measures (mean f;, standard deviation of
fo, and duration)

Step Variable entered F P

1 Duration 28-520 0-000¢
2 Standard deviation of F, 23-207 0-000
3 Peak index 17-800 0-000
4 Linear index 14-556 0-000
5 Exponential index 13-576 0-000
6 Power index 12:107 0-000

TasLe V]II, Classification results of discrimination analysis when
curve-fit indices and global measures are included

Actual group membership Predicted group membership
Approval Attention

Approval 22 3

Attention 1 24

x*=35-57; P<0-001
k=084; P<(-001

is important to recognize that this classification was completed using only two utterance
types under exaggerated speech conditions (i.e. infant-directed speech).

4. Summary and conclusions

The results of the present investigation demonstrated the successful extraction, modelling
and discrimination of £y comtours obtained in two distinct prosodic conditions, ex-
pressions of approval and attention-seeking utterances by mothers to their 4-month-
old infants. The primary finding that we can model naturally occurring f; contours
using a small set of ecologically valid functions is especially significant as it provides
one of the essential tools for quantification of large sets of prosodic data (as noted by
Scherer, 1986). Such a descriptive tool has been recognized as a vital precursor to
furthering the study of speech prosody. The classification of suprasegmental properties
into a closed set of known models has important ramifications beyond the study of
prosody. It might be possible, for example, to synthesize, store, or transmit natural
speech in separately analysed parts, one of which would be suprasegmental shape
(others might include initial source spectra, onset and offset points, changing filter
functions). Given a closed set of models, an f, contour can be accurately specified given
only the equation, its limits and the coefficients. An additional finding is this descriptive
technique can be used to discriminate different types of contours; but this remains
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to be tested more rigorously using larger datasets obtained under less exaggerated
conditions.

Several important considerations emerge to guide future investigation. Development
of a thorough model of speech communication must not only yield accurate dis-
crimination of utterance types, but must faithfully represent the components of the
process as contributed and limited by both the speaker and listener. For example, the
importance of global utterance descriptors, such as mean and variability of f, must be
approached from both the listener’s and the speaker’s perspective. It is possible
that the dominant psychoacoustic factors in determining the listener’s perception are
relatively gross factors snch as the speaker’s overall loudness and pitch, which may
correlate well with levels of arousal (Scherer, 1986). Alternatively the dynamics of
suprasegmental features, such as rate or “acceleration” (d*f,/dr*) of pitch and loudness
change may be perceived with enhanced sensitivity. Indeed the sensitivity of humans
to change and differences rather than static conditions makes these factors especially
attractive as carriers of suprasegmental information.

Finally it must be recognized that speakers and listeners are sensitive to more than
static or dynamic suprasegmental parameters. Even at 4 or 5 months of age infanis
may demonstrate lexical knowledge (Mandel & Jusczyk, 1994), which might well
supercede any suprasegmental effects. Nevertheless, it is clear that specific f; or intensity
shapes or contours of utterances carry meaning; 2 rising and falling contour is quite
clearly different in communicative intent from a rising contour. What is not known is
the degree to which these contours are specified by either the listener or the speaker.
Physiological limits on the respiratory and laryngeal systems, for example, place strict
limits on the ranges and rates of change of vocal loudness and intensity. In terms of
communication of affective state one might expect that these limits are approached
more closely as the speaker’s level of arousal increases. Similarly there are well-known
limits on the communicative process set by bioacoustic and psychoacoustic limits, which
determine auditory sensitivity.

Future efforts will be directed toward extending the present findings to a larger set
of speaking conditions and to those exhibiting less exaggerated speech characteristics.
Modelling of more subtle f; contours will surely present more of a challenge, such that
additional models may be considered. Discrimination of utterance types remains a
central goal in our investigations, as we see classification of prosodic phenomena as
esential to future descriptions and investigations of communication. We further an-
ticipate that these techniques will be exploited for investigations of such phenomena
as development of communication in infants as they model their parents’ §, contours,
and in applications of speech signal processing, including synthesis, transmission and
compression,
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Appendix

The functions to which the f, contours were fit are given below. Seven groups are
shown, each including one to six functions. Each function within a group yielded a
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single regression coefficient, which was averaged with the other coefficients in the
classification to yield a single index for the curve type. Note that the power function
was used twice; once in a category of its own, and once as a member of the exponential
category.

Linear equation

y=a+bx Linear function

Power equation

Power function (also included among the

y=atbx exponential equation group)
Decay equation
y=a +é Decay function
X
Peak equations
0,5(1__4)’ .
y=a+be +° Gaussian peak
b -
y=at+——7r—/7 Lorentzian peak
1+ =2
d
)
y=a+be ¢ Log normal peak
y=a+ be{'{’(i;_j]’(x%)“l Extreme value peak

y=a+b —mm— Logistic peak

2
) :’ Complementary error function peak
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Transition equations

——H) Sigmoid transition

. f(x—c . . -
y=a+ O'Sb[l + error funcnon(—ﬂ Gaussian cumulative transition

2

y=a+——r Logistic dose response waveform
X
1+{=

Waveform equations

. (2nx . .
y=a+b sm(—df + c) Sine function
. o 2mx . .
y=a+bsin 7 +e Sine? function
Exponential equations
y=a+be Exponential function
y=a+bx’ Power function
y=ae® +ce? Two exponential function
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