
2025 19th International Conference on Automatic Face and Gesture Recognition (FG)

Beyond FACS: Data-driven Facial Expression Dictionaries,
with Application to Predicting Autism

Evangelos Sariyanidi,1 Lisa Yankowitz,1 Robert T. Schultz,1,2 John D. Herrington,1,2
Birkan Tunc†1,2 and Jeffrey Cohn†3

1 Center for Autism Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA

3 Deliberate AI, New York, NY, USA.
† Equal contribution.

Abstract— The Facial Action Coding System (FACS) has been
used by numerous studies to investigate the links between facial
behavior and mental health. The laborious and costly process
of FACS coding has motivated the development of machine
learning frameworks for Action Unit (AU) detection. Despite
intense efforts spanning three decades, the detection accuracy
for many AUs is considered to be below the threshold needed for
behavioral research. Also, many AUs are excluded altogether,
making it impossible to fulfill the ultimate goal of FACS—
the representation of any facial expression in its entirety. This
paper considers an alternative approach. Instead of creating
automated tools that mimic FACS experts, we propose to use
a new coding system that mimics the key properties of FACS.
Specifically, we construct a data-driven coding system called the
Facial Basis, which contains units that correspond to localized
and interpretable 3D facial movements, and overcomes three
structural limitations of automated FACS coding. First, the
proposed method is completely unsupervised, bypassing costly,
laborious and variable manual annotation. Second, Facial Basis
reconstructs all observable movement, rather than relying on a
limited repertoire of recognizable movements (as in automated
FACS). Finally, the Facial Basis units are additive, whereas
AUs may fail detection when they appear in a non-additive
combination. The proposed method outperforms the most
frequently used AU detector in predicting autism diagnosis
from in-person and remote conversations, highlighting the
importance of encoding facial behavior comprehensively. To
our knowledge, Facial Basis is the first alternative to FACS
for deconstructing facial expressions in videos into localized
movements. We provide an open source implementation of the
method at github.com/sariyanidi/FacialBasis.

I. INTRODUCTION

Since its initial development more than four decades
ago [1], the Facial Action Coding System (FACS) has
been widely used to study how facial expressions relate to
emotion, personality, mood, deception, and mental health [2].
With the advent of computer vision, researchers have aimed
to automate the detection of FACS Action Units (AUs),
as manual AU coding is laborious, costly, and requires
extensive training [3]. However, despite nearly three decades
of research, the accuracy of automated systems is often below
the threshold needed for behavioral research [4]. Moreover,
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available AU detection software excludes a large number of
AUs—and even the AUs that are included may fail detection
if they are annotated with low reliability or appear in a non-
additive AU combination (Section II-A). As such, automated
FACS coders behave more akin to a retrieval system that
checks for the presence of certain AUs or AU combinations,
rather than fulfilling the original purpose of FACS, which
is encoding any facial expression in its entirety. The con-
sequences of this major goalpost shift remain unknown and
are potentially severe for progress in behavioral and medical
sciences. The inability of automated FACS coders to fully
encode expressions can prevent the discovery of behavioral
patterns that characterize the full range of emotions, person-
ality traits or mental health conditions.

Instead of developing a new automated FACS coder,
we propose a new, alternative coding system that is more
amenable to automated expression measurement. Specifi-
cally, we propose to construct a data-driven coding system
by learning a dictionary [5], which can overcome three
significant inherent limitations of automated FACS coding.
First, dictionaries reconstruct all observable facial move-
ments, therefore can encode expressions comprehensively, in
contrast with FACS software that provide results only for the
AUs in their repertoire. Second, dictionaries are learned in
an unsupervised manner. This is a significant advantage over
FACS-based approaches, as the costly and laborious manual
annotation needed by the latter may render large parts of
available videos unusable for supervised training (Section II-
A). Third, all basic expression units in a dictionary are
additive—they can be detected successfully in isolation or
in combination with other expression units (Section II-A).

To show the utility of data-driven dictionaries in clinical
applications, we compare multiple facial coding systems, in-
cluding (automated) FACS coding, in classifying adolescents
with autism (AUT) vs. those who are neurotypical (NT).
We experiment on two datasets of naturalistic conversational
tasks: one with in-person conversations, and one with remote
conversations. Studying both contexts allows us to assess
whether behavioral symptoms that characterize autism can
be effectively measured from remote conversations, which
is needed given the post-pandemic increase in telehealth
assessment of autism [6]. The present results suggest that
the proposed system outperforms the most widely used
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automated FACS coder, namely OpenFace [7], in AUT vs.
NT classification both on the in-person and the remote
sample. Furthermore, results from remote conversations un-
derpin the importance of comprehensively encoding facial
expressions (Section IV-C.2), suggesting that the exclusion
of many AUs from automated pipelines (Section II-A) may
be consequential.

Our findings indicate that developing data-driven coding
systems that retain the advantages of FACS, rather than
automating FACS, is a potent new paradigm for empowering
mental health research (Section VI), since the structural
limitations of automated FACS coding (Section II-A) may
not be overcome by developing more sophisticated AU
detectors. We provide an end-to-end open-source toolkit1

that can be used for conducting behavioral research with the
Facial Basis. To our knowledge, this is the first open-source
software that provides an alternative to automated FACS for
quantifying facial expressions in 2D videos by breaking them
down into localized expression units.

In sum, the contributions of this paper are as follows. We:
• Show that data-driven dictionaries are a viable alterna-

tive to FACS for supporting mental health research with
an interpretable expression coding system.

• Experiment using in-person and remote conversations
and show that autism can be predicted in both contexts.

• Show that the behavioral symptoms that are most pre-
dictive of AUT vary between contexts.

• Provide an open-source toolkit that to our knowledge
contains the first end-to-end software pipeline for pro-
ducing localized expression coefficients from a data-
driven coding system.

II. RELATED WORK

A. Automated Action Unit Detection

Automated FACS coding has long been a subject of intense
research in computer vision [8]–[10], as it can support a
variety of industrial and research applications [11]. However,
there is still a need for improving accuracy, as the average
F1 score of even state-of-the-art AU detectors is in the range
of 0.60-0.67 [7], [12]–[16]. The accuracy on cross-database
experiments, which are indicative of real-world performance,
tends to be even lower and below the threshold needed
for reliable behavioral research [4]. In an era where AI
algorithms deliver impressive results across domains, the
limited progress in automating FACS can be attributed to
four structural barriers.

First, improving accuracy by increasing the training data is
difficult. Training supervised models necessitates manual AU
annotation, which is laborious and requires multiple trained
experts. Even when longer video recordings of naturalis-
tic social interactions are available, researchers are usually
restricted to use only a few minutes or just seconds long
segments (e.g., most facially-expressive 20 seconds [17])
due to the infeasibility of longer annotations. Second, AU

1https://github.com/sariyanidi/FacialBasis

labels are usable only if they pass a certain level of inter-
rater reliability [1] which can be low for certain AUs [17],
[18], reducing the usable video data further. Third, reliability
tends to drift over time and between independent coders.
Fourth, AUs that have a low base rate are difficult to
detect with a supervised classifier may be excluded from
automated pipelines altogether [16]. For example, existing
toolkits provide outputs for only 17-19 AUs [7], [16], [19],
whereas the original FACS contains 45 AUs (30 for the
revised version) [20]. Finally, the AUs are generally not
additive, as they can modify each other’s appearance. A
typical example is AU 1+4 [21]. When AU 1 occurs alone,
the inner eyebrows are pulled upward. When AU 4 occurs
alone, they are pulled together and downward. When AU 1
and AU 4 occur together, they result in appearance changes
that do not occur in either AU 1 or AU 4 in isolation: The
inner eyebrows are raised and pulled together, giving the
brows an oblique shape, and causing wrinkles to appear in
the center of the forehead. The existence of non-additive AUs
suggest that automated FACS coders can comprehensively
encode all expressions only if they are trained with datasets
that contain all isolated AUs as well as non-additive AU
combinations, which practically is not possible.

While FACS is a powerful coding system, the above-
listed barriers significantly restrict the upper limit of accuracy
achievable by automated FACS coders. Our study focuses on
developing a new coding system that retains a key property
of FACS – breaking down expressions into localized units –
while being more amenable to automation.

B. Coding Systems Based on Linear Models

Linear decomposition based on sparse dictionary learn-
ing [5] provides an alternative coding system that can readily
overcome a fundamental limitation of FACS, namely, the
lack of additivity (Section III-B). In particular, sparse dictio-
naries can be trained to contain elements that correspond to
localized expression units similar to AUs. An implementation
of this idea for facial expression analysis is the Facial Bases
method [22]. However, this method is based on a 2D pixel
representation where separating out-of-plane head motion
from facial expressions is not feasible. For this reason, pro-
ducing meaningful expression coefficients from interactions
that involve head movements (e.g., conversations) is very
challenging. Moreover, the Facial Bases method has not been
compared to automated FACS in a clinical context, thus its
ability to serve as an alternative coding system for mental
health research is yet to be shown.

A potential alternative is to use 3D morphable model
(3DMM) fitting [23] for reconstructing the 3D face shape
from 2D data, as expressions can be separated from head
pose and identity in the 3D coordinate space [24]. A 3DMM
typically contains an expression model (e.g., FaceWare-
house [25]) that, in principle, may serve as a coding sys-
tem. The expression models of 3DMMs, however, typically
contain deformations that can be physically implausible and
impossible to interpret, as they are often generated using
global models such as PCA (Fig. 1; see Section III-B). In
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this paper, we define a sparse dictionary learning procedure
that learns localized 3D facial expression units to generate
physically plausible and interpretable movements akin to
AUs (Section IV-C.1).

Similar interpretable and local linear models which operate
in the 3D coordinate space have previously been used in
the animation industry, where they are usually referred to
as blendshapes [26]. The focus of blendshapes has been
on video synthesis (3D to 2D) rather than analysis via
reconstruction from videos. The number and content of the
expression units in the blendshapes is determined according
to this priority, which is not necessarily in line with the
priorities of expression analysis. For example, the inclusion
of as many as 946 expression units [26] may be warranted
to generate person-specific differences in the appearance of
expressions. Behavioral analysis, on the other hand, often
demands a level of abstraction that ignores identity- or
age-related differences in the generation of expressions.
Representing facial behavior with hundreds of expression
units can create multiple comparisons problems [27] and
lead to multi-determined expression quantifications (same
expression being represented by different components). As
the distinctions between different expression units become
too nuanced and difficult to semantically describe, repro-
ducibility of quantitative findings becomes less attainable.

C. Predicting Autism from Conversations

Social communication is a core domain of impairment
in autism [28]. A number of studies aimed to delineate
communication differences between autistic and neurotypical
participants using video recordings of conversations and
computer vision tools, showing that the two groups can be
successfully classified [29]–[31].

The most common approach adopted by autism re-
searchers to quantify facial expressions has been automated
AU detection, as FACS is an established coding system used
for nearly five decades in behavioral sciences. In particular,
OpenFace has been the most widely used software, used in
a large number of autism studies [29], [32]–[39]. Although
FACS is a reasonable choice in behavioral and medical
sciences due to its interpretability and its ability to represent
any possible facial expression, it is important to note that
automated FACS coding is not equivalent to manual FACS
coding. Detection accuracy for certain AUs can be low in
automated software, and many AUs are entirely excluded,
making it impossible to encode expressions comprehensively
(Section II-A). To our knowledge, we apply the first alter-
native coding system to predict autism from conversational
videos. Experiments show that the proposed system outper-
forms OpenFace in predicting autism, providing a promising
alternative for studying mental health conditions.

A common paradigm in the literature involves unstruc-
tured or semi-structured conversations, where participants
engage in face-to-face, in-person interactions with study
staff [31]. The COVID-19 pandemic accelerated the use of
remote videoconferencing for telehealth applications, includ-
ing autism assessment, due to their scalability, ecological va-

lidity, and convenience [6]. It is therefore increasingly impor-
tant to determine whether remote data collection paradigms
can be effective in studying autism-related differences in
social communication. To our knowledge, this is the first
study that simultaneously conducts controlled AUT vs. NT
classification using automated expression detection on data
collected from the same paradigm from both in-person and
remote conversations (Section IV-A). Results lead to two
novel findings. First, in-person and remote conversations
contain measurable differences in facial behavior between
AUT and NT individuals, evidenced by a high and compa-
rable classification accuracy (Section IV-C.2). Second, the
behaviors that lead to highest classification accuracy are not
necessarily identical between the two contexts.

III. PROPOSED EXPRESSION CODING SYSTEM

The proposed coding system, Facial Basis, is a linear
model that is comprised of localized expression components
called the Basis Units (BUs). Each BU represents a localized
movement in the 3D coordinate space. This coding system
provides two advantages. First, a facial expression is rep-
resented as the linear sum of BUs; therefore, the coding
system does not suffer from the existence of non-additive
units. Second, operating in the 3D rather than the 2D space
allows facial expressions to be separated from head pose- or
identity-related variations in an image.

Below we describe how we reconstruct the 3D face
shape and expression variation in a given 2D image via
3DMMs (Section III-A), and how we construct a coding
system that represents a 3D expression variation as a linear
sum of localized and semantically interpretable expression
components (Section III-B).

A. Recovering Expression via 3DMM Fitting

Let X ∈ R3P be a vector that represents the 3D shape of
a face that appears in a given image—a vector containing the
3D coordinates of P points w.r.t. the camera. Then, 3DMM
fitting aims to reconstruct X as [24]

X = R(X̄+Aα+Eε) + τ , (1)

where X̄ is the mean face of the 3DMM, and A and
E are matrices that respectively represent the identity and
expression models of the 3DMM. R and τ account for
the pose (rotation and translation) of the 3D face w.r.t. the
camera, whereas the vectors α and ε respectively represent
the identity- and expression-related variation in the 3D face
shape. The decoupling of facial expression from pose and
identity as in the right-hand-side of (1) allows one to over-
come two major challenges in expression analysis, namely,
sensitivity to person-specific facial morphology (i.e., identity
bias) and to head pose [11]. It must be noted, however,
that the decoupling of expression from pose or identity is
an active research problem, and the degree to which it can
be accurately accomplished depends on a number of factors,
including the availability of the camera parameters [40] or to
the usage of single or multiple frames while reconstructing
identity [24], as well as the 3DMM fitting technique that is



Fig. 1. The first five components of the expression model used for 3DMM
fitting [25]. Because this model is based on PCA, the components apply to
the entire face and may be physically implausible.

used. Nevertheless, the coding system that we propose is not
tied to a specific 3DMM fitting procedure; as long as the
mesh topology that underlies the 3DMM is compatible, the
same coding system can be used with any fitting procedure.
This modular design ensures the relevance of the solution
to future advances in methods for characterizing expression,
pose and identity.

B. Localized Facial Basis

Once a 3DMM is fit to an image, the facial expression in
the image can be represented as Eε in (1), which is a 3P -
dimensional vector that describes how the 3D face shape
deviates from the neutral face of the person. The matrix E
can be considered as an expression coding system, since
it explains the expression variation as a linear sum of its
components (i.e., columns) e1, e2, . . . , eM as,

Eε = ε1e1 + ε2e2 + · · ·+ εMeM . (2)

That is, each of the components ei can be considered as an
expression code (i.e., unit), and the coefficient εi indicates
whether the expression variation encoded by ei is present
in the input image, while the magnitude of εi quantifies its
intensity. However, the components {ei}i typically corre-
spond to deformations that govern the entire face and can be
physically implausible (Fig. 1), as they are learned with PCA
or a similar global transformation. Moreover, usually all the
expression coefficients {εi}i are activated for any image that
contains an expression variation. These characteristics are in
contrast with FACS, which can represent any expression with
a small subset of localized and specialized AUs. For example,
the prototypical expressions of the six basic emotions involve
2-7 AUs [41]. Indeed, the sparse activation pattern of FACS
is a critical property for behavioral research, as it allows
scientists to investigate which facial movements are related
with an emotion, personality trait, or a mental condition.

Our coding system aims to reconstruct the expression Eε
with another linear model W that emulates two properties
of FACS: Containing localized expression components (i.e.,
columns), and having a sparse activation pattern. Thus, when
W is used to describe a facial expression as

Eε ≈ Wz = z1w1 + z2w2 + · · ·+ zKwK , (3)

only a subset of the coefficients {zi}i are expected to be non-
zero. While some of the expressions encoded in the compo-
nents wi can resemble AUs, in general, the coding system
must be different from the FACS; otherwise, the non-additive
AU combinations could not be reconstructed via a linear

sum as in (3). Indeed, experiments show that some non-
additive AU combinations receive a dedicated component
(Section IV-C.1), although this does not imply that all non-
additive combinations will receive a dedicated component.
The exact nature of the components is determined by the
procedure –the algorithms and the data– that is used while
learning the coding system.

C. The Procedure for Learning the Localized Face Basis

We construct the model W from a dataset of N images
with facial expression variations, in an unsupervised man-
ner. As a first step, we perform 3DMM fitting on every
image, and obtain the corresponding vectors of expression
coefficients ε1, ε2, . . . , εN . Then, we learn the model W
by fitting a sparse dictionary [5], which amounts to solving
an optimization problem where the objective is to minimize
the discrepancy between the two representations of the same
expressions –the representation via the 3DMM’s expression
model E and the targeted local basis W–,∑

n

∥Eεn −Wzn∥2 + λ
∑
n

∥zn∥1, (4)

w.r.t. W and {zn}. During optimization, we also enforce the
ℓ2 norm of the components wi to not exceed 1, otherwise
they can grow unboundedly and compromise the desired
sparsity pattern by allowing very small but non-zero values
in zn to have a significant impact [5].

The ℓ1 penalty λ
∑

n ∥zn∥1 in (4) ensures that the rep-
resentation via W will have a sparse activation pattern [5],
satisfying one of the two properties of FACS that we try to
emulate (Section III-B). The other property that we are after,
i.e., having localized expression units, is not guaranteed by
the terms in (4). One way to achieve this property is adding
an ℓ1 penalty on the expression units wi. While this practice
is known to lead to spatially localized components [22],
[42], [43] , there is no guarantee that all components will
be localized—the resulting components may span the entire
input [22]. The existence of such global expression units is
against a key property of FACS that we try to emulate. Thus,
we enforce a constraint that results in a set of expression
units where every unit is localized. This constraint is based
on using the landmarks corresponding to facial features, as
explained below.

3DMMs typically contain L indices that correspond to a
subset of the P mesh points that enclose the main facial
features, namely the eyes, the brows, the nose and the mouth.
For example, the iBUG-51 template [40] contains L=51
landmarks. We use these landmarks to ensure that every
expression unit is localized. This is achieved by allocating
each expression unit wi to a specific facial feature a priori,
and allowing it to contain movement along the landmark
points of the corresponding facial feature but not the other
landmarks. For example, suppose that the left brow is repre-
sented with LLB landmark points. Then, each component wi

contains 3LLB entries (i.e., the 3D coordinates of LLB points)
that correspond to the left brow landmarks. If a specific wi

is allocated to the left brow, then the corresponding 3LLB



entries are allowed to be non-zero, but the entries corre-
sponding to the other 3(L−LLB) landmarks are forced to be
zero. In this way, all the K expression units are divided into
six groups a priori, corresponding to the six facial features
(two brows, two eyes, nose, mouth). Experiments show that
the components learned in this way contain expression units
that are localized—they control predominantly one facial
feature (Section IV-C.1).

IV. EXPERIMENTS

We first investigate the learnt Facial BUs and compare
them to FACS AUs. Next, we show the utility of the proposed
coding system in a clinical application by reporting results of
classification experiments (AUT vs. NT) from conversational
videos of adolescents. We provide comparisons with the most
widely used automated FACS coder, namely, OpenFace [7].

A. Datasets

Dictionary Learning. We learned the Facial Basis by us-
ing the CK+ [44] and MMI [45] datasets. While spontaneous
datasets such as DISFA [46] or BP4D+ [17] can also be used,
one must remove the video parts without facial movements
and stratify the facial expressions before doing so, to ensure
that the underlying reconstruction algorithm is not biased
by the video parts without expressions and that expressions
with low as well as high base rate are covered. The CK+ and
MMI datasets are readily cropped to facial movements and
contain a large variety of expressions, eliminating the need
for preprocessing steps that can affect the learned expression
components.

Clinical Application. We conducted clinical classification
experiments on two datasets to assess the reproducibility
of our findings in two different contexts, namely in-person
face-to-face (F2F) conversations and remote room-to-room
(R2R) conversations. The second context included videos
collected through a lagless, cable-connected setup mimicking
online video conferencing with ideal connectivity conditions
between two separate rooms. English speaking participants
included adolescents (age 12-17) drawn from a larger sample
who participated in studies at The Children’s Hospital of
Philadelphia. The data collection procedure was approved
by the Institutional Review Board (IRB) of The Children’s
Hospital of Philadelphia. The F2F dataset included 42 par-
ticipants (AUT n = 21 [13 male]; NT n = 21 [13 male]),
and the R2R dataset included 97 participants (AUT n =
49 [30 male]; NT n = 48 [29 male]). For both datasets,
groups were matched on age, sex ratio, and intelligence
quotient (IQ) (Table I). Autism diagnoses were confirmed
through the best clinical judgment of a licensed psychologist
using all available information, including administration of
the Autism Diagnostic Observation Schedule (ADOS-2) [28].
NT participants did not have any history of mental health
diagnosis per self- or parent-report.

Participants completed the Contextual Assessment of So-
cial Skills [47], a brief 3-4 minute semi-structured “get-
to-know-you” conversation with a member of the research
staff (confederates). Confederates were research assistants or

TABLE I
THE (MEAN) AGE AND IQ; AND NUMBER OF FEMALE AND MALE

PARTICIPANTS IN THE TWO STUDY SAMPLES. p VALUES INDICATE

POSSIBLE GROUP DIFFERENCES.

Face-to-Face (F2F) Room-to-room (R2R)
AUT NT p val. AUT NT p val.

Age 14.3 14.2 0.90 15.2 15.1 0.78
IQ 98.1 108.0 0.06 113.0 112.0 0.78
F/M participants 8/13 8/13 1.00 19/30 19/29 1.00

students from the lab, assigned based on availability, whom
the participant had not previously met. Participants and con-
federates were seated across from each other with two video
cameras placed in between to record synchronized frontal
videos of each person at 30 frames per second. Confederates
were instructed to appear interested and engaged but not
carry the conversation (i.e., speak no more than 50% of the
time and wait 5 seconds to re-initiate the conversation after
a lapse).

B. Experimental Setup

Compared coding systems. We compare the prediction
accuracy of four facial expression coding systems: FACS
coding via OpenFace, Facial Basis (Section III-B), PCA
(Section III-A) and local PCA. The latter contains feature-
specific expression components like the BUs, but the compo-
nents are still learned using PCA instead of sparse coding.
For each coding system, we investigate how performance
varies with the number of components used. Specifically,
we report classification accuracy obtained using the first k
components, where k is increased with increments of five
(i.e., k = 5, 10, . . . ,Kexp). For these experiments, the expres-
sion components are ordered according to their magnitude of
activation on the datasets used for the experiments. That is,
the kth expression component of a coding system is the one
that had the kth highest magnitude across the F2F and R2R
datasets.

Classification pipeline. Given the restrictions that stem
from the clinical sample sizes, we conducted experiments
using shallow classification pipelines. Also, to reliably tune
the pipelines through (nested) cross validation, we aimed
to minimize the number of hyperparameters and we used a
linear SVM classifier, which contains only one parameter to
be tuned, namely, the C parameter. The raw input data are
defined by K facial expression signals and 3 head move-
ment signals (i.e., rotation angles). The head movements
are included in FACS as facial action descriptors [1] and
are known to carry meaningful communication cues that
vary with mental health conditions [48], [49]. The facial
expression signals at every frame are obtained either using
a data-driven coding system or OpenFace. The final input
features are generated from these Q = K + 3 signals using
(intra-person) windowed cross-correlation (WCC). WCC is
a widely used approach in behavioral research [50] and can
capture behavioral differences that are expected to exist be-
tween AUT and NT groups, such as typicality/atypicality of
expressions [51] or level of integrating multiple components



of behavior [52]. WCC represents the behavior within a
time window of Tw seconds through a vector of Q2 features
(all possible pairs of signals). The behavior over the entire
video is represented as a Q2-dimensional vector obtained by
averaging over the feature vectors across all time windows
within a video [31]. These Q2-dimensional feature vectors
are used with the SVM classifier. Results are reported with
leave-one-out cross-validation, and the C parameter at each
cross-validation fold is tuned with a 5-fold inner cross-
validation (i.e., nested cross validation).

3DMM fitting. The 3DMM fitting procedure needed for
the Facial Basis (Section III-A) was devised to be computa-
tionally efficient while also representing expressions com-
prehensively. Existing deep learning-based 3DMM fitting
software are usually computationally efficient but represent
expressions with reduced capacity. For example, the methods
based on the Basel Face Model (BFM) [53] topology may use
only 29 [54], [55] of the M = 79 components of associated
expression model [25]. Optimization-based methods such
as 3DI [24], on the other hand, can use all expression
components as they do not commit to a specific version of
a 3DMM, but are prohibitively slow or require GPU during
inference. Thus, we trained a ResNet, which predicts identity,
pose and expression parameters (Section III-A) according to
the BFM model from an image frame in a supervised fashion,
where the labels are obtained by using the 3DI method.
Specifically, we trained using a large dataset (i.e., YouTube
Faces [56] and CelebA [57] datasets combined) to minimize
the L2 loss between the labels predicted by the ResNet and
the labels obtained by 3DI prior to training.

Implementation details. The Facial Basis was learned
using scikit-learn, which implements the minimization
of (4) with its dictionary learning module. We set the λ
coefficient of (4) to 0.2, and the number of components of the
coding system W to K=50, as qualitative inspection sug-
gested that increasing K further led to basis components that
are highly similar. Each expression component in {wi}Ki=1

corresponds to a specific facial feature, and for convenience,
we associated a two-letter code to each of the components
according the feature they correspond to (LB: left brow,
RB: right brow, LE: left eye, RE: right eye, NO: nose and
MO: mouth). Thus, each component wi has a unique name,
constructed by using the two-letter code and a number. For
example, LE-3 is the third expression component associated
with the left eye.

C. Results

1) The Learned Expression Components: Fig. 2 shows the
expressions encoded by some of the FBUs, and suggests that
many components correspond to plausible and interpretable
facial movements—movements that are localized and can be
generated by the human face. This is in contrast with the
PCA-based expression basis of the 3DMMs, which contain
expression components that are not localized and can be
physically implausible (Fig. 1). The BUs show some visible
similarities to FACS AUs, but they also diverge from them.

Fig. 2. The expression encoded by some Facial Basis Units (BUs).

TABLE II
LEFT: CORRESPONDENCES BETWEEN FACIAL BASIS UNITS (BUS) AND

AUS. RIGHT: DESCRIPTION OF SPECIFIED AUS. FOLLOWING FACS
ANNOTATION, ASYMMETRIC AUS ARE DENOTED BY ‘L’ (IF ONLY ON

THE LEFT HEMIFACE) OR ‘R’ (IF ONLY ON THE RIGHT HEMIFACE).

Facial Basis
Unit (BU)

AU
Combination

LB-1 AU L1+L2
LB-3 AU L1+L4
LB-5 AU L2
RB-1 AU R4
LE-3 AU 41
RE-7 AU 5
MO-9 AU R12+R14A
MO-14 AU 15
MO-15 AU 12
MO-17 AU 24
MO-18 AU 12+27
MO-23 AU 26

AU
Code Description

AU 1 Inner Brow Raiser
AU 2 Outer Brow Raiser
AU 4 Brow Lowerer
AU 5 Upper Lid Raiser
AU 12 Lip Corner Puller
AU 14 Dimpler
AU 15 Lip Corner

Depressor
AU 24 Lip Pressor
AU 26 Jaw Drop
AU 27 Mouth Stretch
AU 41 Lid Droop

The existence of differences between these two coding
systems is expected by design, since our goal is not to repli-
cate FACS but create an alternative coding system that can
represent expressions as a linear sum, which cannot be done
by FACS due to the non-additivity of some AUs (Section III-
B). For example, one of the Facial BUs resembles AU 1+4
(LB-3 in Fig. 2), which is a reasonable outcome, as AU 1 and
AU 4 are not additive, and a linear model that contains only
these units would not be able to represent their combination.
Table II shows more examples of similar-looking BUs and
AUs (or AU combinations). Fig. 3 shows that despite the lack
of one-to-one matching between FACS AUs and the Facial
BUs, both systems can be used to infer localized movements
in facial videos. The visualization of all 50 BUs is provided
at github.com/sariyanidi/FacialBasis.

A critical advantage of the Facial Basis compared to
automated FACS software is that it readily supports the
analysis of asymmetric expressions (see modifiers R and
L in Table II). Automated FACS software outputs typically
do not provide predictions for AUs that occur only on one
hemiface [7], [16], [19], in part due to the difficulties related
to eliciting asymmetric facial expressions. Being able to
capture asymmetrical expressions or quantifying the degree
of symmetry can be important for predicting autism [58] or
studying neurological conditions such as cerebral palsy.

2) Clinical Classification Results: Fig. 4 reports the AUT
vs. NT classification performance of the compared coding
systems, and shows how performance varies with the number
of expression components used. On the F2F sample, the

github.com/sariyanidi/FacialBasis
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Fig. 3. The AU labels (ground truth) from videos of the MMI dataset and the BU coefficients of the corresponding expression units, plotted over time.
Results suggest that both the FACS AUs and the Facial BUs can be used to infer localized movements.
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Fig. 4. AUT vs. NT classification results of the compared coding systems
w.r.t. the number of expression components used per coding system.

highest classification accuracy is achieved by the Facial Basis
(Fig. 4a). Of note, all data-driven coding systems outperform
OpenFace. All methods reach their peak performance with
10-15 expression components on the F2F sample, suggesting
that a relatively small number of expression units may suffice
to achieve peak accuracy. However, the trend is different for
the R2R sample. All methods other than automated FACS
reach their peak performance around 40-50 units (Fig. 4b).
The number of components examined for FACS was limited
to 17, the maximum number of AU intensity estimates
provided by OpenFace.

The different trends between F2F (Fig. 4a) and R2R
(Fig. 4b) suggest that behavioral characteristics of in-person
communication may be different from those of a remote,
computer-based communication, even when the latter is
lagless. To further investigate potential differences caused
by the communication medium, we performed classification
experiments using only head movements. On the F2F sample,
the classification accuracy of head movements alone was
73%, which is consistent with previous literature suggesting
that head movements contain rich information to classify
between the AUT and NT groups [49], [59], [60]. However,
the classification accuracy on the R2R sample was only 32%,
providing further evidence about the existence of behavioral
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Fig. 5. Average feature weights of behavioral components that include
head movement (Pitch, Yaw, Roll angles) as well as Facial BUs. Top: in-
person sample (F2F); bottom: remote (R2R) sample.

differences between in-person vs. remote conversations.
Fig. 5 provides further insights about the differences

between the two recording setups by illustrating the ten
Facial BUs that received the highest weight by the SVM
classifiers. Since feature weights depend on the training
sample, we plot a distribution (i.e., boxplot) per component,
constructed by using the feature weights of the corresponding
component across 100 randomly picked subsamples of the
training data. The head movement components (pitch and
yaw rotation) hold the highest weight in the F2F sample but
not in the R2R sample, further supporting the importance of
head movements during in-person communication. The next
most important feature in the F2F sample is RE-3, which
corresponds to closing eyelids (see Supplementary Video).
The high weight of this component may be attributed to
atypical eye-blink patterns that have been observed in autism
[61], [62] or its indirect link to social gaze behavior [63].
The feature with the next highest weight is MO-18, which
corresponds to a smile with open mouth (Fig. 2), and
the importance of this feature may be explained by the
atypicality of smile [64] in youth with autism or reduced
inter-personal affect coordination [32] in autism.

An important detail in Fig. 5 is that the classifier weights
for the R2R setup show slower decay, further supporting the



need of a richer representation with an increased number of
components. While in general the features that lead to the
highest classification accuracy depend on the recording setup,
MO-18 is one of the components that is in the top five of both
recording setups, and another one is the pitch rotation, which
occurs with head nodding. Another high-ranking feature
in the R2R sample is MO-3, which includes a lip corner
movement that can also be observed with a smile. It must
be noted that the weight corresponding to each expression
component in Fig. 5 is depicted after averaging all the cross-
correlation features that include the component. Therefore,
the listed expression components are not necessarily impor-
tant in isolation, but in combination with other components,
since the cross-correlation features encode the relationship
between different behavioral components (Section IV-B).
A more nuanced analysis would require the inspection of
the individual features without averaging. However, such an
analysis requires larger samples, as the weight of individual
features had too much variance and instability in our sample,
which is expected when the number of individual features is
high [65], as in our pipeline (Q2=532=2809).

In sum, our experiments provide three critical insights.
First, data-driven coding outperforms the most widely used
AU detector in predicting autism. Second, automated facial
expression analysis in mental health may require or benefit
from more expression coefficients than those provided by
automated FACS coders. Third, in-person and remote com-
munication likely have different behavioral dynamics.

V. LIMITATIONS

The presented coding system suffers from four limitations
that reduce its interpretability or representation power. First,
while most Facial BUs are interpretable and physically
plausible, there are a number of units that are difficult to
semantically describe or unlikely to be generated by a face
(e.g., MO-4, MO-9 and MO-12 in supplementary video).
These units can be reduced or eliminated by augmenting the
objective function with loss terms that enforce expression
units to be physically plausible by imposing certain anatom-
ical constraints [66]. The second limitation is that some of
the expression units describe very similar movements, and
the lack of distinct differences between expression units
can complicate analyses (Section II-B). This issue can be
remedied by augmenting the objective function (4) with
terms to prevent BUs from being highly similar, or by
creating a hierarchy, akin to hierarchical clustering [67],
where expression units with a high degree of similarity are
clustered together. Third, our classification experiments are
based on a spontaneous task, but the Facial Basis is currently
trained with only posed expressions. To better represent
naturalistic expressions, datasets collected from spontaneous
tasks or interactions [17], [46] can be included. The inclusion
of spontaneous videos may require additional pre-processing
procedures or using alternative loss function (e.g., wing
loss [68]) to ensure that expressions with low as well as
high base rates are represented by the learned coding system.
Finally, the Facial BUs are limited in their ability to capture

wrinkles and furrows that may occur with expressions. This
is likely caused by the fact that the 3DMM that we use to
model the 3D face, BFM, has a relatively low resolution, as
it represents the facial region with approximately 20k points.
This limitation may be remedied by the usage of 3DMMs
with higher resolution, such as the FaceScape [69], which
represents 3D face with approximately 2 million points.

A limitation on the interpretation of the differences be-
tween the R2R and F2F setups is that recordings were drawn
from two independent samples. While these samples are
demographically and clinically similar, it is possible that
underlying differences in the participants in each sample
drove differences, rather than recording setup.

VI. DISCUSSION AND OUTLOOK

Our results suggest that a data-driven coding system pro-
vides an interpretable approach for encoding facial behavior,
and outperforms a standard FACS coder in the scope of
predicting autism. Thus, we show that a promising new
paradigm is to develop alternative coding systems that mimic
FACS rather than developing automated coders that mimic
FACS experts, particularly because the accuracy of the latter
approach may be saturating after more than forty years of
research.

An immediate impact of the proposed study is to use the
specific coding system, namely Facial Basis, for studying
mental conditions and other behavioral research questions
(e.g., emotions). It should be noted, however, that the pro-
posed system is simply a starting point and its current
limitations (Section V) suggest that its output must be
interpreted with caution. The restricted dataset used during
its training may not be representative across a variety of
research questions (e.g., detection of pain or prediction of
emotional states).

The possibly more significant but longer-term impact of
our study is the construction of a universal coding system
similar to FACS that can serve as a common language for
quantifying behavior across studies, contexts and mental
health conditions. A system of this kind would encode facial
expressions comprehensively, reliably, and validly, while
also proving successful across a variety of mental health
applications. As such, the construction of a universal coding
system must be the result of more intense efforts spanning
multiple studies in diverse populations. The dataset that is
used for such a coding system must be large enough to cover
virtually any facial action that can be generated by a face,
while the learning procedure must ensure that expressions
with low as well as high base rate are represented.

ETHICAL IMPACT STATEMENT

The main objective of this study is to advance behavioral
and mental health research by providing scientists with
a tool that encodes facial behavior more comprehensively
than existing tools. This tool, however, could be used by
malevolent actors who want to improve skills and capabilities
that are detrimental to society, such as deception with facial
behavior.



REFERENCES

[1] P. Ekman and W. V. Friesen, “Facial action coding system,” Environ-
mental Psychology & Nonverbal Behavior, 1978.

[2] P. Ekman and E. L. Rosenberg, What the Face Reveals:
Basic and Applied Studies of Spontaneous Expression Using
the Facial Action Coding System (FACS). Oxford University
Press, 04 2005. [Online]. Available: https://doi.org/10.1093/acprof:
oso/9780195179644.001.0001

[3] “Facial Action Coding System - Paul Ekman Group,” https://www.
paulekman.com/facial-action-coding-system/, accessed: 2024-12-19.

[4] I. O. Ertugrul, J. F. Cohn, L. A. Jeni, Z. Zhang, L. Yin, and
Q. Ji, “Crossing domains for au coding: Perspectives, approaches, and
measures,” IEEE transactions on biometrics, behavior, and identity
science, vol. 2, no. 2, pp. 158–171, 2020.

[5] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for
matrix factorization and sparse coding.” Journal of Machine Learning
Research, vol. 11, no. 1, 2010.

[6] Y. L. de Nocker and C. K. Toolan, “Using telehealth to provide
interventions for children with asd: A systematic review,” Review
Journal of Autism and Developmental Disorders, vol. 10, no. 1, pp.
82–112, 2023.
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